cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211609 12 times the total number of smallest parts in all partitions of n, with a(0) = 0.

This page as a plain text file.
%I A211609 #41 Aug 09 2020 07:26:04
%S A211609 0,12,36,60,120,168,312,420,684,960,1428,1932,2856,3780,5280,7068,
%T A211609 9612,12576,16884,21840,28788,37044,47976,61104,78540,99156,125832,
%U A211609 157980,198744,247560,309276,382764,474552,584304,719520,881076,1079244,1314636,1601268,1942080,2354016,2842116
%N A211609 12 times the total number of smallest parts in all partitions of n, with a(0) = 0.
%C A211609 The product 12spt(n) appears in the formula b(n) = 12spt(n)+(24n-1)p(n) which is mentioned in several papers (see Ono's paper, see also Garvan's papers and Garvan's slides in link section). Note that b(n) is A220481(n).
%C A211609 Observation: first 13 terms coincide with the differences between all terms mentioned in a table of special mock Jacobi forms and the first 13 terms of A183011. For the table see Dabholkar-Murthy-Zagier paper, appendix A.1, table of Q_M (weight 2 case), M = 6, C_M = 12. See also the table in page 46. Question: do all terms coincide?
%H A211609 Atish Dabholkar, Sameer Murthy, Don Zagier, <a href="http://arxiv.org/abs/1208.4074">Quantum Black Holes, Wall Crossing, and Mock Modular Forms</a>, arXiv:1208.4074 [hep-th], 2012-2014.
%H A211609 F. G. Garvan, <a href="https://qseries.org/fgarvan/papers/spt2.pdf">Congruences for Andrews' spt-function modulo powers of 5, 7 and 13</a>
%H A211609 F. G. Garvan, <a href="http://arxiv.org/abs/1011.1957">Congruences for Andrews' spt-function modulo 32760 and extension of Atkin's Hecke-type partition congruences</a>, arXiv:1011.1957 [math.NT], 2010, see (1.5), (2.12).
%H A211609 F. G. Garvan, <a href="https://carma.newcastle.edu.au/meetings/alfcon/pdfs/Frank_Garvan-alfcon.pdf">The smallest parts partition function</a>, slides, 2012
%H A211609 Ken Ono, <a href="http://dx.doi.org/10.1073/pnas.1015339107">Congruences for the Andrews spt-function</a>, PNAS January 11, 2011 108 (2) 473-476.
%F A211609 a(n) = A220481(n) - A183011(n).
%F A211609 a(n) = 12spt(n) = 12*A092269(n) = 6(M_2(n) - N_2(n)) = 6*A211982(n) = 6*(A220909(n) - A220908(n)), n >= 1.
%Y A211609 Cf. A000041, A092269, A183010, A183011, A211982, A220481, A220908, A220909.
%K A211609 nonn
%O A211609 0,2
%A A211609 _Omar E. Pol_, Feb 16 2013