This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211618 #10 Dec 04 2017 11:53:54 %S A211618 0,3,24,89,218,439,772,1245,1878,2699,3728,4993,6514,8319,10428,12869, %T A211618 15662,18835,22408,26409,30858,35783,41204,47149,53638,60699,68352, %U A211618 76625,85538,95119,105388,116373,128094,140579,153848,167929,182842,198615,215268 %N A211618 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and 2w+x+y>1. %C A211618 For a guide to related sequences, see A211422. %H A211618 Colin Barker, <a href="/A211618/b211618.txt">Table of n, a(n) for n = 0..1000</a> %H A211618 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-2,3,-1). %F A211618 a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>5. %F A211618 From _Colin Barker_, Dec 04 2017: (Start) %F A211618 G.f.: x*(3 + 15*x + 23*x^2 + 5*x^3 + 2*x^4) / ((1 - x)^4*(1 + x)). %F A211618 a(n) = 4*n^3 - 3*n^2 + 3*n - 2 for n>0 and even. %F A211618 a(n) = 4*n^3 - 3*n^2 + 3*n - 1 for n odd. %F A211618 (End) %t A211618 t = Compile[{{u, _Integer}}, %t A211618 Module[{s = 0}, (Do[If[2 w + x + y > 1, %t A211618 s = s + 1], {w, #}, {x, #}, {y, #}] &[ %t A211618 Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]]; %t A211618 Map[t[#] &, Range[0, 70]] (* A211618 *) %t A211618 FindLinearRecurrence[%] %t A211618 (* _Peter J. C. Moses_, Apr 13 2012 *) %t A211618 Join[{0},LinearRecurrence[{3, -2, -2, 3, -1},{3, 24, 89, 218, 439},35]] (* _Ray Chandler_, Aug 02 2015 *) %o A211618 (PARI) concat(0, Vec(x*(3 + 15*x + 23*x^2 + 5*x^3 + 2*x^4) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ _Colin Barker_, Dec 04 2017 %Y A211618 Cf. A211422. %K A211618 nonn,easy %O A211618 0,2 %A A211618 _Clark Kimberling_, Apr 16 2012