This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211620 #11 Dec 04 2017 15:30:24 %S A211620 0,2,16,38,76,122,184,254,340,434,544,662,796,938,1096,1262,1444,1634, %T A211620 1840,2054,2284,2522,2776,3038,3316,3602,3904,4214,4540,4874,5224, %U A211620 5582,5956,6338,6736,7142,7564,7994,8440,8894,9364,9842,10336,10838,11356,11882 %N A211620 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and -1<=2w+x+y<=1. %C A211620 For a guide to related sequences, see A211422. %H A211620 Colin Barker, <a href="/A211620/b211620.txt">Table of n, a(n) for n = 0..1000</a> %H A211620 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1). %F A211620 a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>4. %F A211620 From _Colin Barker_, Dec 04 2017: (Start) %F A211620 G.f.: 2*x*(1 + 6*x + 3*x^2 + 2*x^3) / ((1 - x)^3*(1 + x)). %F A211620 a(n) = 6*n^2 - 6*n + 4 for n>0 and even. %F A211620 a(n) = 6*n^2 - 6*n + 2 for n odd. %F A211620 (End) %t A211620 t = Compile[{{u, _Integer}}, %t A211620 Module[{s = 0}, (Do[If[-1 <= 2 w + x + y <= 1, %t A211620 s = s + 1], {w, #}, {x, #}, {y, #}] &[ %t A211620 Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]]; %t A211620 Map[t[#] &, Range[0, 70]] (* A211620 *) %t A211620 %/2 (* integers *) %t A211620 FindLinearRecurrence[%] %t A211620 (* _Peter J. C. Moses_, Apr 13 2012 *) %t A211620 Join[{0},LinearRecurrence[{2, 0, -2, 1},{2, 16, 38, 76},42]] (* _Ray Chandler_, Aug 02 2015 *) %o A211620 (PARI) concat(0, Vec(2*x*(1 + 6*x + 3*x^2 + 2*x^3) / ((1 - x)^3*(1 + x)) + O(x^40))) \\ _Colin Barker_, Dec 04 2017 %Y A211620 Cf. A211422. %K A211620 nonn,easy %O A211620 0,2 %A A211620 _Clark Kimberling_, Apr 16 2012