This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211623 #11 Dec 05 2017 08:19:33 %S A211623 0,2,12,28,54,86,128,176,234,298,372,452,542,638,744,856,978,1106, %T A211623 1244,1388,1542,1702,1872,2048,2234,2426,2628,2836,3054,3278,3512, %U A211623 3752,4002,4258,4524,4796,5078,5366,5664,5968,6282,6602,6932,7268,7614,7966,8328 %N A211623 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and -1<=w+2x+3y<=1. %C A211623 For a guide to related sequences, see A211422. %H A211623 Colin Barker, <a href="/A211623/b211623.txt">Table of n, a(n) for n = 0..1000</a> %H A211623 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1). %F A211623 a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>4. %F A211623 From _Colin Barker_, Dec 05 2017: (Start) %F A211623 G.f.: 2*x*(1 + 4*x + 2*x^2 + x^3) / ((1 - x)^3*(1 + x)). %F A211623 a(n) = 4*n^2 - 3*n + 2 for n>0 and even. %F A211623 a(n) = 4*n^2 - 3*n + 1 for n odd. %F A211623 (End) %t A211623 t = Compile[{{u, _Integer}}, %t A211623 Module[{s = 0}, (Do[If[-1 <= w + 2 x + 3 y <= 1, %t A211623 s = s + 1], {w, #}, {x, #}, {y, #}] &[ %t A211623 Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]]; %t A211623 Map[t[#] &, Range[0, 70]] (* A211623 *) %t A211623 %/2 (* integers *) %t A211623 FindLinearRecurrence[%] %t A211623 (* _Peter J. C. Moses_, Apr 13 2012 *) %t A211623 Join[{0},LinearRecurrence[{2, 0, -2, 1},{2, 12, 28, 54},43]] (* _Ray Chandler_, Aug 02 2015 *) %o A211623 (PARI) concat(0, Vec(2*x*(1 + 4*x + 2*x^2 + x^3) / ((1 - x)^3*(1 + x)) + O(x^40))) \\ _Colin Barker_, Dec 05 2017 %Y A211623 Cf. A211422. %K A211623 nonn,easy %O A211623 0,2 %A A211623 _Clark Kimberling_, Apr 16 2012