cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211624 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w+2x+2y>0.

This page as a plain text file.
%I A211624 #13 Aug 23 2017 06:22:43
%S A211624 0,4,30,104,245,485,837,1339,1998,2858,3920,5234,6795,8659,10815,
%T A211624 13325,16172,19424,23058,27148,31665,36689,42185,48239,54810,61990,
%U A211624 69732,78134,87143,96863,107235,118369,130200,142844,156230,170480,185517,201469,218253
%N A211624 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w+2x+2y>0.
%C A211624 For a guide to related sequences, see A211422.
%H A211624 Colin Barker, <a href="/A211624/b211624.txt">Table of n, a(n) for n = 0..1000</a>
%H A211624 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-4,1,2,-1).
%F A211624 a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
%F A211624 From _Colin Barker_, Aug 23 2017: (Start)
%F A211624 G.f.: x*(4 + 22*x + 40*x^2 + 23*x^3 + 7*x^4) / ((1 - x)^4*(1 + x)^2).
%F A211624 a(n) = (64*n^3 - 14*n^2 + 12*n) / 16 for n even.
%F A211624 a(n) = (64*n^3 - 14*n^2 + 24*n - 10) / 16 for n odd. (End)
%t A211624 t = Compile[{{u, _Integer}},
%t A211624    Module[{s = 0}, (Do[If[w + 2 x + 2 y > 0,
%t A211624          s = s + 1], {w, #}, {x, #}, {y, #}] &[
%t A211624       Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];
%t A211624 Map[t[#] &, Range[0, 60]]  (* A211624 *)
%t A211624 FindLinearRecurrence[%]
%t A211624 (* _Peter J. C. Moses_, Apr 13 2012 *)
%t A211624 LinearRecurrence[{2, 1, -4, 1, 2, -1},{0, 4, 30, 104, 245, 485},36] (* _Ray Chandler_, Aug 02 2015 *)
%o A211624 (PARI) concat(0, Vec(x*(4 + 22*x + 40*x^2 + 23*x^3 + 7*x^4) / ((1 - x)^4*(1 + x)^2) + O(x^50))) \\ _Colin Barker_, Aug 23 2017
%Y A211624 Cf. A211422.
%K A211624 nonn,easy
%O A211624 0,2
%A A211624 _Clark Kimberling_, Apr 17 2012