This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211624 #13 Aug 23 2017 06:22:43 %S A211624 0,4,30,104,245,485,837,1339,1998,2858,3920,5234,6795,8659,10815, %T A211624 13325,16172,19424,23058,27148,31665,36689,42185,48239,54810,61990, %U A211624 69732,78134,87143,96863,107235,118369,130200,142844,156230,170480,185517,201469,218253 %N A211624 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w+2x+2y>0. %C A211624 For a guide to related sequences, see A211422. %H A211624 Colin Barker, <a href="/A211624/b211624.txt">Table of n, a(n) for n = 0..1000</a> %H A211624 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-4,1,2,-1). %F A211624 a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6). %F A211624 From _Colin Barker_, Aug 23 2017: (Start) %F A211624 G.f.: x*(4 + 22*x + 40*x^2 + 23*x^3 + 7*x^4) / ((1 - x)^4*(1 + x)^2). %F A211624 a(n) = (64*n^3 - 14*n^2 + 12*n) / 16 for n even. %F A211624 a(n) = (64*n^3 - 14*n^2 + 24*n - 10) / 16 for n odd. (End) %t A211624 t = Compile[{{u, _Integer}}, %t A211624 Module[{s = 0}, (Do[If[w + 2 x + 2 y > 0, %t A211624 s = s + 1], {w, #}, {x, #}, {y, #}] &[ %t A211624 Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]]; %t A211624 Map[t[#] &, Range[0, 60]] (* A211624 *) %t A211624 FindLinearRecurrence[%] %t A211624 (* _Peter J. C. Moses_, Apr 13 2012 *) %t A211624 LinearRecurrence[{2, 1, -4, 1, 2, -1},{0, 4, 30, 104, 245, 485},36] (* _Ray Chandler_, Aug 02 2015 *) %o A211624 (PARI) concat(0, Vec(x*(4 + 22*x + 40*x^2 + 23*x^3 + 7*x^4) / ((1 - x)^4*(1 + x)^2) + O(x^50))) \\ _Colin Barker_, Aug 23 2017 %Y A211624 Cf. A211422. %K A211624 nonn,easy %O A211624 0,2 %A A211624 _Clark Kimberling_, Apr 17 2012