A211631 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w^2>x^2+y^2.
0, 0, 8, 40, 104, 208, 384, 624, 952, 1384, 1920, 2584, 3368, 4304, 5416, 6696, 8160, 9808, 11680, 13784, 16120, 18696, 21552, 24672, 28064, 31752, 35768, 40128, 44808, 49816, 55200, 60952, 67112, 73664, 80624, 88032, 95848, 104120
Offset: 0
Keywords
Crossrefs
Cf. A211422.
Programs
-
Mathematica
t = Compile[{{u, _Integer}}, Module[{s = 0}, (Do[If[w^2 > x^2 + y^2, s = s + 1], {w, #}, {x, #}, {y, #}] &[ Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]]; Map[t[#] &, Range[0, 50]] (* A211631 *) %/8 (* integers *) (* Peter J. C. Moses, Apr 13 2012 *)
Comments