A211422 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0.
1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761
Offset: 0
Keywords
A182195 Numbers k for which no numbers w,x,y, all in {1,...,k}, satisfy w^2 + x^2 + y^2 = 2k.
0, 1, 2, 4, 5, 8, 10, 14, 16, 20, 26, 29, 30, 32, 40, 46, 50, 56, 62, 64, 65, 74, 78, 80, 94, 104, 110, 116, 120, 126, 128, 142, 158, 160, 170, 174, 184, 190, 200, 206, 222, 224, 238, 248, 254, 256, 260, 270, 286, 296, 302, 312, 318, 320, 334, 350, 366
Offset: 0
Keywords
Comments
For a guide to related sequences, see A211422.
Crossrefs
Cf. A211422.
Programs
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[w^2 + x^2 + y^2 == 2 n, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 400]] (* A211649 *) -1 + Flatten[Position[%, 0]] (* this sequence *) (* Peter J. C. Moses, Apr 13 2012 *)
Comments
Examples
Links
Crossrefs
Programs
Mathematica