cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211650 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^3 < x^3 + y^3.

Original entry on oeis.org

0, 1, 7, 22, 50, 96, 163, 255, 378, 534, 730, 969, 1255, 1592, 1982, 2434, 2949, 3533, 4188, 4918, 5732, 6629, 7617, 8696, 9876, 11154, 12539, 14037, 15646, 17378, 19230, 21209, 23321, 25568, 27957, 30487, 33166, 36000, 38989, 42140
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

For a guide to related sequences, see A211422.
Also the number of ordered triples (w,x,y) with all terms in {1,...,n} and w^3 <= x^3 + y^3. [Note that there are no integer solutions to w^3 = x^3 + y^3, see for example Compos. Math. 140 (6) (2004) p 1399 Theorem 8.1. - R. J. Mathar, Jun 27 2012]

References

  • L. Euler, Vollständige Anleitung zur Algebra, (1770), Roy. Acad. Sci., St. Petersburg.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^3 < x^3 + y^3, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]] (* A211650 *)
    (* Peter J. C. Moses, Apr 13 2012 *)