This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211664 #11 May 14 2025 09:08:43 %S A211664 1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, %T A211664 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, %U A211664 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 %N A211664 Number of iterations (...(log_4(log_3(log_2(n))))...) such that the result is < 1. %F A211664 With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} := 1; example: E_{i=1..4} 3 = 3^(3^(3^3)) = 3^(3^27), we get: %F A211664 a(E_{i=1..n} (i+1)) = a(E_{i=1..n-1} (i+1))+1, for n>=1. %F A211664 G.f.: g(x) = (1/(1-x))*Sum_{k>=0} x^(E_{i=1..k} (i+1)). %F A211664 The explicit first terms of the g.f. are g(x) = (x+x^2+x^(2^3)+x^(2^3^4)+x^(2^3^4^5)+...)/(1-x) =(x+x^2+x^8+x^2417851639229258349412352+...)/(1-x). %e A211664 a(n)=1, 2, 3, 4, 5 for n=1, 2, 2^3, 2^3^4, 2^3^4^5 (=1, 2, 8, 2417851639229258349412352, 2^3^1024). %Y A211664 Cf. A001069, A010096, A084558, A211661, A211666, A211668, A211670. %K A211664 base,nonn %O A211664 1,2 %A A211664 _Hieronymus Fischer_, Apr 30 2012