A211694 Number of partitions of [n] that contain no isolated singletons.
1, 0, 1, 1, 2, 3, 6, 11, 23, 47, 103, 226, 518, 1200, 2867, 6946, 17234, 43393, 111419, 290242, 768901, 2065172, 5630083, 15549403, 43527487, 123343911, 353864422, 1026935904, 3014535166, 8945274505, 26829206798, 81293234754, 248805520401, 768882019073, 2398686176048, 7552071250781
Offset: 0
Keywords
Examples
All solutions for n = 7: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 2 1 1 0 1 0 0 1 1 2 1 2 0 2 0 1 1 0 1 0 2 1 2 0 2 0 1 1 0 1 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1132
- A. O. Munagi, Set partitions with isolated singletons, Am. Math. Monthly 125 (2018), 447-452.
Programs
-
Maple
f:=proc(n) local j; add(combinat:-bell(j-1)*binomial(n-j-1, j-1), j=0..floor(n/2)); end; [seq(f(n), n=0..100)]; # N. J. A. Sloane, May 19 2018
-
Mathematica
a[n_] := If[n == 0, 1, Sum[BellB[j-1]*Binomial[n-j-1, j-1], {j, 1, Floor[n/2]}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 17 2024, after Maple code *)
Formula
G.f.: 1+x^2/W(0), where W(k) = 1 - x - x^2/(1 - x^2*(k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 10 2014
Extensions
Edited by Andrey Zabolotskiy, Feb 07 2025
Comments