A211702 Rectangular array: R(n,k)=[n/F(1)]+[n/F(2)]+...+[n/F(k)], where [ ]=floor and F=A000045 (Fibonacci numbers), by antidiagonals.
1, 2, 2, 3, 4, 2, 4, 6, 5, 2, 5, 8, 7, 5, 2, 6, 10, 10, 8, 5, 2, 7, 12, 12, 11, 8, 5, 2, 8, 14, 15, 13, 11, 8, 5, 2, 9, 16, 17, 17, 14, 11, 8, 5, 2, 10, 18, 20, 19, 18, 14, 11, 8, 5, 2, 11, 20, 22, 22, 20, 18, 14, 11, 8, 5, 2, 12, 22, 25, 25, 23, 20, 18, 14, 11, 8, 5, 2, 13
Offset: 1
Examples
Northwest corner: 1...2...3...4....5....6....7 2...4...6...8....10...12...15 2...5...7...10...12...15...17 2...5...8...11...13...17...19 2...5...8...11...14...18...20 2...5...8...11...14...18...20
Crossrefs
Cf. A211701.
Programs
-
Mathematica
f[n_, m_] := Sum[Floor[n/Fibonacci[k]], {k, 1, m}] TableForm[Table[f[n, m], {m, 1, 20}, {n, 1, 16}]] Flatten[Table[f[n + 1 - m, m], {n, 1, 14}, {m, 1, n}]]
Comments