A211790
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k
1, 7, 1, 23, 7, 1, 54, 22, 7, 1, 105, 51, 22, 7, 1, 181, 97, 50, 22, 7, 1, 287, 166, 96, 50, 22, 7, 1, 428, 263, 163, 95, 50, 22, 7, 1, 609, 391, 255, 161, 95, 50, 22, 7, 1, 835, 554, 378, 253, 161, 95, 50, 22, 7, 1, 1111, 756, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1
Examples
Northwest corner: 1, 7, 23, 54, 105, 181, 287, 428, 609 1, 7, 22, 51, 97, 166, 263, 391, 554 1, 7, 22, 50, 96, 163, 255, 378, 534 1, 7, 22, 50, 95, 161, 253, 374, 528 1, 7, 22, 50, 95, 161, 252, 373, 527 For n=2 and k>=1, the 7 triples (w,x,y) are (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2).
Crossrefs
Programs
-
Mathematica
z = 48; t[k_, n_] := Module[{s = 0}, (Do[If[w^k < x^k + y^k, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]; Table[t[1, n], {n, 1, z}] (* A004068 *) Table[t[2, n], {n, 1, z}] (* A211635 *) Table[t[3, n], {n, 1, z}] (* A211650 *) TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]] Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211790 *) Table[n (n + 1) (4 n - 1)/6, {n, 1, z}] (* row-limit sequence, A002412 *) (* Peter J. C. Moses, Apr 13 2012 *)
Formula
R(k,n) = n(n-1)(4n+1)/6 for 1<=k<=n, and
R(k,n) = Sum{Sum{floor[(x^k+y^k)^(1/k)] : 1<=x<=n, 1<=y<=n}} for 1<=k<=n.
Comments