cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211793 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k >= x^k + y^k.

Original entry on oeis.org

0, 1, 0, 4, 1, 0, 10, 5, 1, 0, 20, 13, 5, 1, 0, 35, 28, 14, 5, 1, 0, 56, 50, 29, 14, 5, 1, 0, 84, 80, 53, 30, 14, 5, 1, 0, 120, 121, 88, 55, 30, 14, 5, 1, 0, 165, 175, 134, 90, 55, 30, 14, 5, 1, 0, 220, 244, 195, 138, 91, 55, 30, 14, 5, 1, 0, 286, 327, 270, 201, 139
Offset: 1

Views

Author

Clark Kimberling, Apr 21 2012

Keywords

Comments

Limiting row sequence: A000330.

Examples

			Northwest corner:
  0, 1, 4, 10, 20, 35, 56,  84
  0, 1, 5, 13, 28, 50, 80, 121
  0, 1, 5, 14, 29, 53, 88, 134
  0, 1, 5, 14, 30, 55, 90, 138
  0, 1, 5, 14, 30, 55, 91, 139
  0, 1, 5, 14, 30, 55, 91, 140
		

Crossrefs

Cf. A211790.
Cf. A000292 (row 1), A211636 (row 2), A211651 (row 3), A000330.

Programs

  • Mathematica
    z = 48;
    t[k_, n_] := Module[{s = 0},
       (Do[If[w^k >= x^k + y^k, s = s + 1],
           {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
    Table[t[1, n], {n, 1, z}]  (* A000292 *)
    Table[t[2, n], {n, 1, z}]  (* A211636 *)
    Table[t[3, n], {n, 1, z}]  (* A211651 *)
    TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
    Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* this sequence *)
    Table[k (k - 1) (2 k - 1)/6, {k, 1,
      z}] (* row-limit sequence, A000330 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Formula

A211790(k,n) + R(k,n) = 3^(n-1).