A211793 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k >= x^k + y^k.
0, 1, 0, 4, 1, 0, 10, 5, 1, 0, 20, 13, 5, 1, 0, 35, 28, 14, 5, 1, 0, 56, 50, 29, 14, 5, 1, 0, 84, 80, 53, 30, 14, 5, 1, 0, 120, 121, 88, 55, 30, 14, 5, 1, 0, 165, 175, 134, 90, 55, 30, 14, 5, 1, 0, 220, 244, 195, 138, 91, 55, 30, 14, 5, 1, 0, 286, 327, 270, 201, 139
Offset: 1
Examples
Northwest corner: 0, 1, 4, 10, 20, 35, 56, 84 0, 1, 5, 13, 28, 50, 80, 121 0, 1, 5, 14, 29, 53, 88, 134 0, 1, 5, 14, 30, 55, 90, 138 0, 1, 5, 14, 30, 55, 91, 139 0, 1, 5, 14, 30, 55, 91, 140
Programs
-
Mathematica
z = 48; t[k_, n_] := Module[{s = 0}, (Do[If[w^k >= x^k + y^k, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]; Table[t[1, n], {n, 1, z}] (* A000292 *) Table[t[2, n], {n, 1, z}] (* A211636 *) Table[t[3, n], {n, 1, z}] (* A211651 *) TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]] Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* this sequence *) Table[k (k - 1) (2 k - 1)/6, {k, 1, z}] (* row-limit sequence, A000330 *) (* Peter J. C. Moses, Apr 13 2012 *)
Formula
A211790(k,n) + R(k,n) = 3^(n-1).
Comments