A211796 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k<=x^k+y^k.
1, 8, 1, 26, 7, 1, 60, 22, 7, 1, 115, 51, 22, 7, 1, 196, 99, 50, 22, 7, 1, 308, 168, 96, 50, 22, 7, 1, 456, 265, 163, 95, 50, 22, 7, 1, 645, 393, 255, 161, 95, 50, 22, 7, 1, 880, 556, 378, 253, 161, 95, 50, 22, 7, 1, 1166, 760, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1
Examples
Northwest corner: 1...8...26...60...115...196...308 1...7...22...51...99....168...265 1...7...22...50...96....163...255 1...7...22...50...95....161...253 1...7...22...50...95....161...252
Crossrefs
Cf. A211790.
Programs
-
Mathematica
z = 48; t[k_, n_] := Module[{s = 0}, (Do[If[w^k <= x^k + y^k, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]; Table[t[1, n], {n, 1, z}] (* A002413 *) Table[t[2, n], {n, 1, z}] (* A211634 *) Table[t[3, n], {n, 1, z}] (* A211650 *) TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]] Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211796 *) Table[k (k - 1) (2 k - 1)/6, {k, 1, z}] (* row-limit sequence, A002412 *) (* Peter J. C. Moses, Apr 13 2012 *)
Comments