This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211799 #5 Dec 04 2016 19:46:28 %S A211799 0,0,0,1,1,0,4,5,1,0,10,13,5,1,0,20,26,14,5,1,0,35,48,29,14,5,1,0,56, %T A211799 78,53,30,14,5,1,0,84,119,88,55,30,14,5,1,0,120,173,134,90,55,30,14,5, %U A211799 1,0,165,240,195,138,91,55,30,14,5,1,0,220,323,270,201,139,91 %N A211799 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k<=x^k+y<k. %C A211799 Row 1: A002292 %C A211799 Row 2: A211637 %C A211799 Row 3: A211651 %C A211799 Limiting row sequence: A000330 %C A211799 Let R be the array in A211796 and let R' be the array in A211799. Then R(k,n)+R'(k,n)=3^(n-1). %C A211799 See the Comments at A211790. %e A211799 Northwest corner: %e A211799 0...0...1...4....10...20...35...56 %e A211799 0...1...5...13...26...48...78...119 %e A211799 0...1...5...14...29...53...88...134 %e A211799 0...1...5...14...30...55...90...138 %e A211799 0...1...5...14...30...55...91...139 %t A211799 z = 48; %t A211799 t[k_, n_] := Module[{s = 0}, %t A211799 (Do[If[w^k > x^k + y^k, s = s + 1], %t A211799 {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]; %t A211799 Table[t[1, n], {n, 1, z}] (* A000292 *) %t A211799 Table[t[2, n], {n, 1, z}] (* A211637 *) %t A211799 Table[t[3, n], {n, 1, z}] (* A211651 *) %t A211799 TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]] %t A211799 Flatten[Table[t[k, n - k + 1], %t A211799 {n, 1, 12}, {k, 1, n}]] (* A211799 *) %t A211799 Table[k (k - 1) (2 k - 1)/6, %t A211799 {k, 1, z}] (* row-limit sequence, A000330 *) %t A211799 (* _Peter J. C. Moses_, Apr 13 2012 *) %Y A211799 Cf. A211790. %K A211799 nonn,tabl %O A211799 1,7 %A A211799 _Clark Kimberling_, Apr 21 2012