This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211802 #21 Jul 06 2024 15:55:05 %S A211802 0,3,0,11,3,0,28,13,3,0,56,32,13,3,0,99,64,34,13,3,0,159,113,68,34,13, %T A211802 3,0,240,181,117,70,34,13,3,0,344,272,187,125,70,34,13,3,0,475,388, %U A211802 282,197,125,70,34,13,3,0,635,535,406,292,203,125,70,34,13,3,0 %N A211802 R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2*w^k < x^k + y^k; square array read by descending antidiagonals. %C A211802 Row 1: A182260. %C A211802 Row 2: A211800. %C A211802 Row 3: A211801. %C A211802 Limiting row sequence: A016061. %C A211802 Let R be the array in this sequence and let R' be the array in A211805. Then R(k,n) + R'(k,n) = 3^(n-1). %C A211802 See the Comments at A211790. %e A211802 Northwest corner: %e A211802 0 3 11 28 56 99 159 240 %e A211802 0 3 13 32 64 113 181 272 %e A211802 0 3 13 34 68 117 187 282 %e A211802 0 3 13 34 70 125 197 292 %e A211802 0 3 13 34 70 125 203 302 %t A211802 z = 48; %t A211802 t[k_, n_] := Module[{s = 0}, %t A211802 (Do[If[2 w^k < x^k + y^k, s = s + 1], %t A211802 {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]; %t A211802 Table[t[1, n], {n, 1, z}] (* A182260 *) %t A211802 Table[t[2, n], {n, 1, z}] (* A211800 *) %t A211802 Table[t[3, n], {n, 1, z}] (* A211801 *) %t A211802 TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]] %t A211802 Flatten[Table[t[k, n - k + 1], {n, 1, 12}, %t A211802 {k, 1, n}]] (* this sequence *) %t A211802 Table[k (k - 1) (4 k + 1)/6, {k, 1, %t A211802 z}] (* row-limit sequence, A016061 *) %t A211802 (* _Peter J. C. Moses_, Apr 13 2012 *) %Y A211802 Cf. A016061, A182260, A211790, A211800, A211801, A211802, A211805. %K A211802 nonn,tabl %O A211802 1,2 %A A211802 _Clark Kimberling_, Apr 22 2012 %E A211802 Definition corrected by _Georg Fischer_, Sep 10 2022