This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211805 #5 Dec 04 2016 19:46:28 %S A211805 1,5,1,16,5,1,36,14,5,1,69,32,14,5,1,117,61,30,14,5,1,184,103,57,30, %T A211805 14,5,1,272,162,99,55,30,14,5,1,385,240,156,91,55,30,14,5,1,525,341, %U A211805 230,146,91,55,30,14,5,1,696,465,323,220,140,91,55,30,14,5,1,900 %N A211805 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k>=x^k+y<k. %C A211805 Row 1: A055232 %C A211805 Row 2: A211803 %C A211805 Row 3: A211804 %C A211805 Limiting row sequence: A000330 %C A211805 Let R be the array in A211802 and let R' be the array in A211805. Then R(k,n)+R'(k,n)=3^(n-1). %C A211805 See the Comments at A211790. %e A211805 Northwest corner: %e A211805 1...5...16...36...69...117...184 %e A211805 1...5...14...32...61...103...162 %e A211805 1...5...14...30...57...99....156 %e A211805 1...5...14...30...55...91....146 %e A211805 1...5...14...30...55...91....140 %t A211805 z = 48; %t A211805 t[k_, n_] := Module[{s = 0}, %t A211805 (Do[If[2 w^k >= x^k + y^k, s = s + 1], %t A211805 {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]; %t A211805 Table[t[1, n], {n, 1, z}] (* A055232 *) %t A211805 Table[t[2, n], {n, 1, z}] (* A211803 *) %t A211805 Table[t[3, n], {n, 1, z}] (* A211804 *) %t A211805 TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]] %t A211805 Flatten[Table[t[k, n - k + 1], {n, 1, 12}, %t A211805 {k, 1, n}]] (* A211805 *) %t A211805 Table[k (k + 1) (2 k + 1)/6, %t A211805 {k, 1, z}] (* row-limit sequence, A000330 *) %t A211805 (* _Peter J. C. Moses_, Apr 13 2012 *) %Y A211805 Cf. A211790. %K A211805 nonn,tabl %O A211805 1,2 %A A211805 _Clark Kimberling_, Apr 22 2012