This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211808 #5 Dec 04 2016 19:46:28 %S A211808 1,5,1,16,5,1,36,16,5,1,69,36,16,5,1,117,69,38,16,5,1,184,119,73,38, %T A211808 16,5,1,272,190,123,75,38,16,5,1,385,282,194,131,75,38,16,5,1,525,399, %U A211808 290,204,131,75,38,16,5,1,696,547,415,300,210,131,75,38,16,5,1 %N A211808 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k<=x^k+y<k. %C A211808 Row 1: A055232 %C A211808 Row 2: A211806 %C A211808 Row 3: A211807 %C A211808 Limiting row sequence: A000330 %C A211808 Let R be the array in A211808 and let R' be the array in A182259. Then R(k,n)+R'(k,n)=3^(n-1). %C A211808 See the Comments at A211790. %e A211808 Northwest corner: %e A211808 1...5...16...36...69...117...184 %e A211808 1...5...16...36...69...119...190 %e A211808 1...5...16...38...73...123...194 %e A211808 1...5...16...38...75...131...204 %e A211808 1...5...16...38...75...131...210 %t A211808 z = 48; %t A211808 t[k_, n_] := Module[{s = 0}, %t A211808 (Do[If[2 w^k <= x^k + y^k, s = s + 1], %t A211808 {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]; %t A211808 Table[t[1, n], {n, 1, z}] (* A055232 *) %t A211808 Table[t[2, n], {n, 1, z}] (* A211806 *) %t A211808 Table[t[3, n], {n, 1, z}] (* A211807 *) %t A211808 TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]] %t A211808 Flatten[Table[t[k, n - k + 1], %t A211808 {n, 1, 12}, {k, 1, n}]] (* A211808 *) %t A211808 Table[k (4 k^2 - 3 k + 5)/6, %t A211808 {k, 1, z}] (* row-limit sequence, A174723 *) %t A211808 (* _Peter J. C. Moses_, Apr 13 2012 *) %Y A211808 Cf. A211790. %K A211808 nonn,tabl %O A211808 1,2 %A A211808 _Clark Kimberling_, Apr 22 2012