cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211849 T(n,k)=Number of nonnegative integer arrays of length n+2k+1 with new values 0 upwards introduced in order, no three adjacent elements all unequal, and containing the value k+1.

Original entry on oeis.org

1, 1, 5, 1, 7, 19, 1, 9, 35, 63, 1, 11, 56, 147, 196, 1, 13, 82, 286, 561, 588, 1, 15, 113, 494, 1302, 2013, 1731, 1, 17, 149, 785, 2619, 5486, 6936, 5049, 1, 19, 190, 1173, 4755, 12713, 21897, 23244, 14689, 1, 21, 236, 1672, 7996, 26163, 57913, 84003, 76434
Offset: 1

Views

Author

R. H. Hardin Apr 22 2012

Keywords

Comments

Table starts
....1.....1.....1......1......1.......1.......1.......1........1........1
....5.....7.....9.....11.....13......15......17......19.......21.......23
...19....35....56.....82....113.....149.....190.....236......287......343
...63...147...286....494....785....1173....1672....2296.....3059.....3975
..196...561..1302...2619...4755....7996...12671...19152....27854....39235
..588..2013..5486..12713..26163...49210...86275..142968...226230...344475
.1731..6936.21897..57913.134164..280751..542235..981675..1685165..2766870
.5049.23244.84003.251481.651814.1510267.3200979.6311155.11721555.20705130

Examples

			Some solutions for n=3 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....0....1....0....1....1....0....0....0....1....1....1....1....1....1
..1....0....1....1....1....1....1....0....1....1....1....1....1....1....1....0
..2....0....1....2....1....2....2....1....1....1....1....2....2....0....2....0
..2....2....2....2....1....2....1....1....2....2....2....2....2....0....2....2
..3....0....2....2....2....3....1....2....2....2....1....2....0....2....3....2
..3....0....3....3....2....3....3....2....3....3....1....3....0....2....3....3
..3....3....3....3....3....4....3....3....2....3....3....2....3....3....4....2
..4....3....4....4....3....4....4....3....2....3....3....2....3....3....4....2
..4....4....3....4....4....1....4....4....4....4....4....4....4....4....5....4
..4....4....3....4....4....1....4....4....4....4....4....4....4....4....5....4
..5....5....5....5....5....5....5....5....5....5....5....5....5....5....4....5
		

Crossrefs

Row 3 is A192136(n+2)