This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211851 #7 Jul 20 2018 08:01:58 %S A211851 196,561,1302,2619,4755,7996,12671,19152,27854,39235,53796,72081, %T A211851 94677,122214,155365,194846,241416,295877,359074,431895,515271,610176, %U A211851 717627,838684,974450,1126071,1294736,1481677,1688169,1915530,2165121,2438346 %N A211851 Number of nonnegative integer arrays of length 2n+6 with new values 0 upwards introduced in order, no three adjacent elements all unequal, and containing the value n+1. %C A211851 Row 5 of A211849. %H A211851 R. H. Hardin, <a href="/A211851/b211851.txt">Table of n, a(n) for n = 1..210</a> %F A211851 Empirical: a(n) = (43/24)*n^4 + (185/12)*n^3 + (1217/24)*n^2 + (937/12)*n + 50. %F A211851 Conjectures from _Colin Barker_, Jul 20 2018: (Start) %F A211851 G.f.: x*(196 - 419*x + 457*x^2 - 241*x^3 + 50*x^4) / (1 - x)^5. %F A211851 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5. %F A211851 (End) %e A211851 Some solutions for n=3: %e A211851 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 %e A211851 ..0....1....1....1....0....1....0....1....1....1....1....1....1....0....1....1 %e A211851 ..1....1....1....1....1....0....1....0....1....1....1....1....1....0....1....1 %e A211851 ..1....1....2....1....1....0....1....0....2....2....2....2....2....1....2....1 %e A211851 ..2....2....2....2....2....2....1....2....2....2....1....2....1....1....2....2 %e A211851 ..2....1....2....1....1....2....2....2....2....3....1....2....1....2....3....1 %e A211851 ..3....1....3....1....1....3....2....2....3....2....1....3....3....2....2....1 %e A211851 ..3....3....3....1....1....3....0....3....3....2....1....3....3....3....2....3 %e A211851 ..0....3....3....3....3....3....0....3....3....4....3....4....4....3....3....3 %e A211851 ..0....4....4....3....3....3....3....2....4....2....3....3....3....4....2....4 %e A211851 ..4....4....3....4....4....4....3....2....4....4....3....3....4....3....2....4 %e A211851 ..0....5....3....3....3....4....4....4....3....2....4....0....4....4....4....2 %Y A211851 Cf. A211849. %K A211851 nonn %O A211851 1,1 %A A211851 _R. H. Hardin_, Apr 22 2012