This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211868 #15 Feb 16 2025 08:33:17 %S A211868 1,0,1,0,3,0,3,0,9,1,19,2,59,13,161,50,413,123,1201,352,3463,689, %T A211868 10921,1585,35365,5409,110773,20950,359725,82702,1192801,320873, %U A211868 3998397,1096384,13584075,3417934,45973713,10657777,157515581,33447019,543663919,111463220 %N A211868 Number of ways to write n as the root-mean-square (RMS) of a set of distinct odd integers. %H A211868 Eric Weisstein's World of Math, <a href="https://mathworld.wolfram.com/Root-Mean-Square.html">Root-Mean-Square</a> %e A211868 a(5) = 3: 5 = RMS(5) = RMS(1,7) = RMS(1,5,7); %e A211868 a(7) = 3: 7 = RMS(7) = RMS(1,5,11) = RMS(1,5,7,11); %e A211868 a(9) = 9: 9 = RMS(9) = RMS(5,7,13) = RMS(5,7,9,13) = RMS(3,5,11,13) = RMS(3,5,9,11,13) = RMS(1,3,7,11,15) = RMS(1,3,7,9,11,15) = RMS(1,3,5,17) = RMS(1,3,5,9,17); %e A211868 a(10) = 1: 10 = RMS(1,3,5,7,9,11,15,17); %e A211868 a(11) = 19: 11 = RMS(11) = RMS(3,9,13,15) = RMS(3,9,11,13,15) = RMS(5,7,17) = RMS(5,7,11,17) = RMS(1,5,13,17) = RMS(1,5,11,13,17) = RMS(1,3,9,15,17) = RMS(1,3,9,11,15,17) = RMS(3,5,7,9,13,15,17) = RMS(3,5,7,9,11,13,15,17) = RMS(1,5,7,13,19) = RMS(1,5,7,11,13,19) = RMS(1,3,7,9,15,19) = RMS(1,3,7,9,11,15,19) = RMS(3,5,7,9,21) = RMS(3,5,7,9,11,21) = RMS(1,3,5,9,13,21) = RMS(1,3,5,9,11,13,21); %e A211868 a(12) = 2: 12 = RMS(1,5,7,9,11,15,17,19) = RMS(1,3,5,7,9,13,17,23). %o A211868 (Haskell) %o A211868 a211868 n = f a005408_list 1 nn 0 where %o A211868 f (o:os) l nl xx %o A211868 | yy > nl = 0 %o A211868 | yy < nl = f os (l + 1) (nl + nn) yy + f os l nl xx %o A211868 | otherwise = if w == n then 1 else 0 %o A211868 where w = if r == 0 then a000196 m else 0 %o A211868 (m, r) = divMod yy l %o A211868 yy = xx + o * o %o A211868 nn = n ^ 2 %Y A211868 Cf. A000196, A005408, A163974, A164283. %K A211868 nonn %O A211868 1,5 %A A211868 _Reinhard Zumkeller_, Feb 13 2013 %E A211868 a(37)-a(40) from _Alois P. Heinz_, Feb 25 2013 %E A211868 a(41)-a(42) from _Alois P. Heinz_, May 03 2015