cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211878 Decimal expansion of positive constant C such that 1 = Sum_{k>=1} 1/C^(2^k).

This page as a plain text file.
%I A211878 #16 Feb 20 2014 08:54:53
%S A211878 1,3,2,9,0,5,9,1,0,8,7,4,9,5,5,9,5,6,4,6,0,9,9,1,6,8,2,6,7,9,2,4,3,6,
%T A211878 2,5,1,9,4,9,7,7,6,5,9,3,8,8,4,1,8,2,8,7,8,7,3,4,2,2,9,8,5,0,2,7,3,0,
%U A211878 4,0,8,5,4,4,9,2,0,4,4,7,6,3,4,8,0,3,8,3,8,2,7,7,9,7,8,1,9,1,2,2,9,6,8,0,1,9,3,2,3,8,6,6
%N A211878 Decimal expansion of positive constant C such that 1 = Sum_{k>=1} 1/C^(2^k).
%e A211878 C = 1.3290591087495595646...
%p A211878 Digits:= 120:
%p A211878 s:= convert(fsolve(sum(1/C^(2^k), k=1..infinity)=1, C=1)/10, string):
%p A211878 seq(parse(s[n+1]), n=1..112);
%t A211878 digits = 112; f[x_?NumericQ] := NSum[1/x^(2^k), {k, 1, Infinity}, WorkingPrecision -> digits]; x /. FindRoot[f[x] == 1, {x, 3/2, 1, 2}, WorkingPrecision -> digits] // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Feb 20 2014 *)
%K A211878 cons,nonn
%O A211878 1,2
%A A211878 _Jimmy Zotos_ and _Balarka Sen_, Feb 13 2013
%E A211878 More terms from _Alois P. Heinz_, Feb 13 2013