This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211889 #25 Feb 16 2025 08:33:17 %S A211889 1,2,6,30,60,244230,6930,546840,3120613860,7399357350,10719893274090, %T A211889 173761834256010,14772517344885300 %N A211889 Smallest positive d such that prime(n)+k*d is prime for 0 <= k <= n. %C A211889 a(n) = A211890(n,k+1) - A211890(n,k), 0 <= k < n. %H A211889 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeArithmeticProgression.html">Prime Arithmetic Progression</a>. %H A211889 Wikipedia, <a href="http://en.wikipedia.org/wiki/Primes_in_arithmetic_progression">Primes in arithmetic progression</a>. %H A211889 <a href="/index/Pri#primes_AP">Index entries for sequences related to primes in arithmetic progressions</a> %F A211889 A010051(A000040(n) + k * a(n)) = 1, 0 <= k <= n. %o A211889 (Haskell) %o A211889 a211889 n = head [k | let p = a000040 n, k <- [1..], %o A211889 all ((== 1) . a010051') $ map ((+ p) . (* k)) (a002260_row n)] %o A211889 (Python) %o A211889 from sympy import isprime, prime, primorial, primepi %o A211889 def A211889(n): %o A211889 if n == 1: %o A211889 return 1 %o A211889 delta = primorial(primepi(n)) %o A211889 p, d = prime(n), delta %o A211889 while True: %o A211889 q = p %o A211889 for _ in range(n): %o A211889 q += d %o A211889 if not isprime(q): %o A211889 break %o A211889 else: %o A211889 return d %o A211889 d += delta # _Chai Wah Wu_, Jun 28 2019 %Y A211889 Cf. A000040, A010051, A211890. %K A211889 nonn,more %O A211889 1,2 %A A211889 _Reinhard Zumkeller_, Jul 13 2012 %E A211889 a(10) from _Chai Wah Wu_, Jun 29 2019 %E A211889 a(11)-a(13) from _Giovanni Resta_, Jun 30 2019