This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211891 #6 Apr 26 2012 00:28:24 %S A211891 1,2,14,682,236826,525175434,7101054148862,575978478770467714, %T A211891 277997363115795461721154,794462328877965002894838885122, %U A211891 13398419999037765629218732004567606814,1330302023374557034879527995005574743144202826 %N A211891 G.f.: exp( Sum_{n>=1} 2 * Pell(n^2) * x^n/n ), where Pell(n) = A000129(n). %C A211891 Given g.f. A(x), note that A(x)^(1/2) is not an integer series. %e A211891 G.f.: A(x) = 1 + 2*x + 14*x^2 + 682*x^3 + 236826*x^4 + 525175434*x^5 +... %e A211891 such that %e A211891 log(A(x))/2 = x + 12*x^2/2 + 985*x^3/3 + 470832*x^4/4 + 1311738121*x^5/5 + 21300003689580*x^6/6 + 2015874949414289041*x^7/7 +...+ Pell(n^2)*x^n/n +... %e A211891 Pell numbers begin: %e A211891 A000129 = [1,2,5,12,29,70,169,408,985,2378,5741,13860,33461,...]. %o A211891 (PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)} %o A211891 {a(n)=polcoeff(exp(sum(k=1, n, 2*Pell(k^2)*x^k/k)+x*O(x^n)), n)} %o A211891 for(n=0, 20, print1(a(n), ", ")) %Y A211891 Cf. A208056, A211892, A000129 (Pell), A204327 (Pell(n^2)). %K A211891 nonn %O A211891 0,2 %A A211891 _Paul D. Hanna_, Apr 24 2012