This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211965 #20 Aug 02 2014 06:14:08 %S A211965 2,4,12,40,148,572,2248,8920,35536,141860,566880,2266400,9063372, %T A211965 36249044,144987304,579931488,2319690516,9278691224,37114623248, %U A211965 148458209744,593832272556,2375327957436,9501309564288,38005233726372,152020925844036 %N A211965 Number of binary sequences of length 2n-1 and curling number 1. %C A211965 Equivalently, number of binary sequences of length 2n-1 with no initial repeats (see A122536). %H A211965 B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://arxiv.org/abs/1212.6102">On Curling Numbers of Integer Sequences</a>, arXiv:1212.6102 %H A211965 B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Sloane/sloane3.html">On Curling Numbers of Integer Sequences</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3. %H A211965 <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a> %F A211965 a(n) = 2*A093371(2n-1). %F A211965 a(n) = 2*A211966(n-1), n >= 2. %Y A211965 Bisection of A122536. %Y A211965 Cf. A093371, A211966, A216955, A216958. %K A211965 nonn %O A211965 1,1 %A A211965 _Omar E. Pol_, Nov 28 2012