cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211966 Number of binary sequences of length 2n and curling number 1.

This page as a plain text file.
%I A211966 #23 Aug 02 2014 06:14:08
%S A211966 2,6,20,74,286,1124,4460,17768,70930,283440,1133200,4531686,18124522,
%T A211966 72493652,289965744,1159845258,4639345612,18557311624,74229104872,
%U A211966 296916136278,1187663978718,4750654782144,19002616863186,76010462922018
%N A211966 Number of binary sequences of length 2n and curling number 1.
%C A211966 Equivalently, number of binary sequences of length 2n with no initial repeats (see A122536).
%H A211966 B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://arxiv.org/abs/1212.6102">On Curling Numbers of Integer Sequences</a>, arXiv:1212.6102
%H A211966 B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Sloane/sloane3.html">On Curling Numbers of Integer Sequences</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
%H A211966 <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a>
%F A211966 a(n) = 2*A093371(2n) = A093371(2n+1) = A211965(n+1)/2.
%Y A211966 Bisection of A122536.
%Y A211966 Cf. A093371, A211965, A216955, A216958.
%K A211966 nonn
%O A211966 1,1
%A A211966 _Omar E. Pol_, Nov 28 2012