This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211967 #26 Mar 28 2014 23:42:28 %S A211967 1,2,4,5,8,9,11,16,17,18,19,22,23,32,33,34,35,37,38,39,44,46,47,64,65, %T A211967 66,67,68,69,70,71,74,75,76,77,78,79,88,89,92,93,94,95,128,129,130, %U A211967 131,132,133,134,135,137,138,139,140,141,142,143,148,149,150 %N A211967 Triangle of decimal equivalents of binary numbers with no initial repeats, A211027. %H A211967 Alois P. Heinz, <a href="/A211967/b211967.txt">Rows n = 1..15, flattened</a> %H A211967 <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a> %e A211967 Irregular triangle begins: %e A211967 1; %e A211967 2; %e A211967 4, 5; %e A211967 8, 9, 11; %e A211967 16, 17, 18, 19, 22, 23; %e A211967 32, 33, 34, 35, 37, 38, 39, 44, 46, 47; %p A211967 s:= proc(n) s(n):= `if`(n=1, [[1]], map(x-> %p A211967 [[x[], 0], [x[], 1]][], s(n-1))) end: %p A211967 T:= proc(n) map (x-> add(x[i]*2^(nops(x)-i), i=1..nops(x)), select %p A211967 (proc(l) local i; for i to iquo(nops(l), 2) do if l[1..i]= %p A211967 l[i+1..2*i] then return false fi od; true end, s(n)))[] end: %p A211967 seq (T(n), n=1..8); # _Alois P. Heinz_, Dec 03 2012 %Y A211967 Columns 1-2 give: A000079(n-1), A000051(n-1) for n>2. Row n has length A093371(n). Right border gives A083329(n-1). %Y A211967 Cf. A122536, A211029, A211968, A211969, A216955. %K A211967 nonn,tabf,base %O A211967 1,2 %A A211967 _Omar E. Pol_, Nov 30 2012