This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211969 #26 Dec 04 2012 10:03:36 %S A211969 3,6,7,10,12,13,14,15,20,21,24,25,26,27,28,29,30,31,36,40,41,42,43,45, %T A211969 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,72,73,80,81,82,83,84, %U A211969 85,86,87,90,91,96,97,98,99,100,101,102,103,104,105,106 %N A211969 Triangle of decimal equivalents of binary numbers with some initial repeats, A211968. %H A211969 Alois P. Heinz, <a href="/A211969/b211969.txt">Rows n = 2..14, flattened</a> %H A211969 <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a> %e A211969 Irregular triangle begins, starting at row 2: %e A211969 3; %e A211969 6, 7; %e A211969 10, 12, 13, 14, 15; %e A211969 20, 21, 24, 25, 26, 27, 28, 29, 30, 31; %e A211969 36, 40, 41, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63; %p A211969 s:= proc(n) s(n):= `if`(n=1, [[1]], map(x-> %p A211969 [[x[], 0], [x[], 1]][], s(n-1))) end: %p A211969 T:= proc(n) map (x-> add(x[i]*2^(nops(x)-i), i=1..nops(x)), select %p A211969 (proc(l) local i; for i to iquo(nops(l), 2) do if l[1..i]= %p A211969 l[i+1..2*i] then return true fi od; false end, s(n)))[] end: %p A211969 seq (T(n), n=2..7); # _Alois P. Heinz_, Dec 04 2012 %Y A211969 Complement of A211967. %Y A211969 Row lengths give: A093370. %Y A211969 Column 1 gives: A005418(n+1). %Y A211969 Right border gives: A000225(n). %Y A211969 Cf. A093370, A093371, A121880, A122536, A211027, A211029, A211973, A216955. %K A211969 nonn,tabf %O A211969 2,1 %A A211969 _Omar E. Pol_, Dec 03 2012