cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211970 Square array read by antidiagonal: T(n,k), n >= 0, k >= 0, which arises from a generalization of Euler's Pentagonal Number Theorem.

This page as a plain text file.
%I A211970 #43 Feb 16 2025 08:33:17
%S A211970 1,1,1,2,1,1,4,2,1,1,6,3,1,1,1,10,5,2,1,1,1,16,7,3,1,1,1,1,24,11,4,2,
%T A211970 1,1,1,1,36,15,5,3,1,1,1,1,1,54,22,7,4,2,1,1,1,1,1,78,30,10,4,3,1,1,1,
%U A211970 1,1,1,112,42,13,5,4,2,1,1,1,1,1,1
%N A211970 Square array read by antidiagonal: T(n,k), n >= 0, k >= 0, which arises from a generalization of Euler's Pentagonal Number Theorem.
%C A211970 In the infinite square array if k is positive then column k is related to the generalized m-gonal numbers, where m = k+4. For example: column 1 is related to the generalized pentagonal numbers A001318. Column 2 is related to the generalized hexagonal numbers A000217 (note that A000217 is also the entry for the triangular numbers). And so on...
%C A211970 In the following table Euler's Pentagonal Number Theorem is represented by the entries A001318, A195310, A175003 and A000041. It seems unusual that the partition numbers are located in a middle column (see below row 1 of the table):
%C A211970 ========================================================
%C A211970 .                                          Column k of
%C A211970 .                                          this square
%C A211970 .       Generalized   Triangle  Triangle   array A211970
%C A211970 k    m    m-gonal       "A"       "B"      [row sums of
%C A211970 .         numbers                          triangle "B"
%C A211970 .        (if k>=1)                         with a(0)=1,
%C A211970 .                                          if k >= 0]
%C A211970 ========================================================
%C A211970 0    4    A008794        -         -         A211971
%C A211970 1    5    A001318     A195310   A175003      A000041
%C A211970 2    6    A000217     A195826   A195836      A006950
%C A211970 3    7    A085787     A195827   A195837      A036820
%C A211970 4    8    A001082     A195828   A195838      A195848
%C A211970 5    9    A118277     A195829   A195839      A195849
%C A211970 6   10    A074377     A195830   A195840      A195850
%C A211970 7   11    A195160     A195831   A195841      A195851
%C A211970 8   12    A195162     A195832   A195842      A195852
%C A211970 9   13    A195313     A195833   A195843      A196933
%C A211970 10  14    A195818     A210944   A210954      A210964
%C A211970 ...
%C A211970 It appears that column 2 of the square array is A006950.
%C A211970 It appears that column 3 of the square array is A036820.
%C A211970 The partial sums of column 0 give A015128. - _Omar E. Pol_, Feb 09 2014
%H A211970 L. Euler, <a href="http://www.math.dartmouth.edu/~euler/docs/originals/E542.pdf">De mirabilibus proprietatibus numerorum pentagonalium</a>
%H A211970 L. Euler, <a href="https://arxiv.org/abs/math/0505373">On the remarkable properties of the pentagonal numbers</a>, arXiv:math/0505373 [math.HO], 2005.
%H A211970 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentagonalNumberTheorem.html">Pentagonal Number Theorem</a>
%F A211970 T(n,k) = A211971(n), if k = 0.
%F A211970 T(n,k) = A195825(n,k), if k >= 1.
%e A211970 Array begins:
%e A211970 1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
%e A211970 1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
%e A211970 2,     2,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
%e A211970 4,     3,   2,   1,   1,   1,  1,  1,  1,  1,  1, ...
%e A211970 6,     5,   3,   2,   1,   1,  1,  1,  1,  1,  1, ...
%e A211970 10,    7,   4,   3,   2,   1,  1,  1,  1,  1,  1, ...
%e A211970 16,   11,   5,   4,   3,   2,  1,  1,  1,  1,  1, ...
%e A211970 24,   15,   7,   4,   4,   3,  2,  1,  1,  1,  1, ...
%e A211970 36,   22,  10,   5,   4,   4,  3,  2,  1,  1,  1, ...
%e A211970 54,   30,  13,   7,   4,   4,  4,  3,  2,  1,  1, ...
%e A211970 78,   42,  16,  10,   5,   4,  4,  4,  3,  2,  1, ...
%e A211970 112,  56,  21,  12,   7,   4,  4,  4,  4,  3,  2, ...
%e A211970 160,  77,  28,  14,  10,   5,  4,  4,  4,  4,  3, ...
%e A211970 224, 101,  35,  16,  12,   7,  4,  4,  4,  4,  4, ...
%e A211970 312, 135,  43,  21,  13,  10,  5,  4,  4,  4,  4, ...
%e A211970 432, 176,  55,  27,  14,  12,  7,  4,  4,  4,  4, ...
%e A211970 ...
%o A211970 (GW-BASIC)' A program (with two A-numbers) for the square array of the example section.
%o A211970 10 DIM A057077(100), A195152(15,10), T(15,10)
%o A211970 20 FOR K = 0 TO 10 'Column 0-10
%o A211970 30 T(0,K) = 1     'Row 0
%o A211970 40 FOR N = 1 TO 15 'Rows 1-15
%o A211970 50 FOR J = 1 TO N
%o A211970 60 IF A195152(J,K) <= N THEN T(N,K) = T(N,K) + A057077(J-1) * T(N - A195152(J,K),K)
%o A211970 70 NEXT J
%o A211970 80 NEXT N
%o A211970 90 NEXT K
%o A211970 100 FOR N = 0 TO 15: FOR K = 0 TO 10
%o A211970 110 PRINT T(N,K);
%o A211970 120 NEXT K: PRINT: NEXT N
%o A211970 130 END
%Y A211970 Columns (0-10): A211971, A000041, A006950, A036820, A195848, A195849, A195850, A195851, A195852, A196933, A210964.
%Y A211970 For another version see A195825.
%Y A211970 Cf. A057077, A195152.
%K A211970 nonn,tabl
%O A211970 0,4
%A A211970 _Omar E. Pol_, Jun 10 2012