A211978 Total number of parts in all partitions of n plus the sum of largest parts of all partitions of n.
0, 2, 6, 12, 24, 40, 70, 108, 172, 256, 384, 550, 798, 1112, 1560, 2136, 2926, 3930, 5288, 6996, 9260, 12104, 15798, 20412, 26348, 33702, 43044, 54588, 69090, 86906, 109126, 136270, 169854, 210732, 260924, 321752, 396028, 485624, 594402, 725174, 883092, 1072208
Offset: 0
Keywords
Examples
Illustration of initial terms as a minimalist diagram of regions of the set of partitions of n, for n = 1..6: . _ _ _ _ _ _ . _ _ _ | . _ _ _|_ | . _ _ | | . _ _ _ _ _ _ _|_ _|_ | . _ _ _ | _ _ _ | | . _ _ _ _ _ _ _|_ | _ _ _|_ | | . _ _ | _ _ | | _ _ | | | . _ _ _ _ _|_ | _ _|_ | | _ _|_ | | | . _ _ _ _ | _ _ | | _ _ | | | _ _ | | | | . _ _ | _ | | _ | | | _ | | | | _ | | | | | . | | | | | | | | | | | | | | | | | | | | | . . 2 6 12 24 40 70 . Also using the elements from the diagram we can draw an infinite Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n) as shown below: . 11........................................................... . /\ . / \ . / \ 7.................................. / \ . /\ / \ 5.................... / \ /\/ \ . /\ / \ /\ / \ 3.......... / \ / \ / \/ \ 2..... /\ / \ /\/ \ / \ 1.. /\ / \ /\/ \ / \ /\/ \ 0 /\/ \/ \/ \/ \/ \ . 0,2, 6, 12, 24, 40, 70... .
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..3000
- Toufik Mansour, Armend Sh. Shabani, Enumerations on bargraphs, Discrete Math. Lett. (2019) Vol. 2, 65-94.
- Omar E. Pol, Visualization of regions in a diagram for A006128
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to toothpick sequences
Crossrefs
Programs
-
Maple
Q := sum(x^j/(1-x^j), j = 1 .. i): R := product(1-x^j, j = 1 .. i): g := sum(x^i*(1+i+Q)/R, i = 1 .. 100): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 41); # Emeric Deutsch, Oct 07 2016
-
Mathematica
Array[2 Sum[DivisorSigma[0, m] PartitionsP[# - m], {m, #}] &, 42, 0] (* Michael De Vlieger, Mar 20 2020 *)
Formula
a(n) = 2*A006128(n).
a(n) = (Sum_{m=1..p(n)} A194446(m)) + (Sum_{m=1..p(n)} A141285(m)) = 2*Sum_{m=1..p(n)} A194446(m) = 2*Sum_{m=1..p(n)} A141285(m), where p(n) = A000041(n), n >= 1.
The trivariate g.f. G(t,s,x) of the partitions of a nonnegative integer relative to weight (marked by x), number of parts (marked by t), and largest part (marked by s) is G(t,s,x) = Sum_{i>=1} t*s^i*x^i/product_{j=1..i} (1-tx^j). Setting s = t, we obtain the bivariate g.f. of the partitions relative to weight (marked by x) and semiperimeter of the Ferrers board (marked by t). The g.f. of a(n) is g(x) = Sum_{i>=1} ((x^i*(1 + i + Q(x))/R(x)), where Q(x) = sum_{j=1..i} (x^j/(1 - x^j)) and R(x) = product_{j=1..i}(1-x^j). g(x) has been obtained by setting t = 1 in dG(t,t,x))/dt. - Emeric Deutsch, Oct 07 2016
Comments