This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A211992 #38 May 12 2020 12:58:52 %S A211992 1,1,1,2,1,1,1,2,1,3,1,1,1,1,2,1,1,3,1,2,2,4,1,1,1,1,1,2,1,1,1,3,1,1, %T A211992 2,2,1,4,1,3,2,5,1,1,1,1,1,1,2,1,1,1,1,3,1,1,1,2,2,1,1,4,1,1,3,2,1,5, %U A211992 1,2,2,2,4,2,3,3,6,1,1,1,1,1,1,1,2,1,1,1,1,1,3,1,1,1,1,2,2,1,1,1,4,1,1,1,3,2,1,1,5,1,1,2,2,2,1,4,2,1,3,3,1,6,1,3,2,2,5,2,4,3,7 %N A211992 Triangle read by rows in which row n lists the partitions of n in colexicographic order. %C A211992 The order of the partitions of every integer is reversed with respect to A026792. For example: in A026792 the partitions of 3 are listed as [3], [2, 1], [1, 1, 1], however here the partitions of 3 are listed as [1, 1, 1], [2, 1], [3]. %C A211992 Row n has length A006128(n). Row sums give A066186. Right border gives A000027. The equivalent sequence for compositions (ordered partitions) is A228525. - _Omar E. Pol_, Aug 24 2013 %C A211992 The representation of the partitions (for fixed n) is as (weakly) decreasing lists of parts, the order between individual partitions (for the same n) is co-lexicographic. The equivalent sequence for partitions as (weakly) increasing lists and lexicographic order is A026791. - _Joerg Arndt_, Sep 02 2013 %H A211992 Joerg Arndt, <a href="/A211992/b211992.txt">Table of n, a(n) for n = 1..10000</a> %H A211992 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a> %H A211992 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A211992 From _Omar E. Pol_, Aug 24 2013: (Start) %e A211992 Illustration of initial terms: %e A211992 ----------------------------------------- %e A211992 n Diagram Partition %e A211992 ----------------------------------------- %e A211992 . _ %e A211992 1 |_| 1; %e A211992 . _ _ %e A211992 2 |_| | 1, 1, %e A211992 2 |_ _| 2; %e A211992 . _ _ _ %e A211992 3 |_| | | 1, 1, 1, %e A211992 3 |_ _| | 2, 1, %e A211992 3 |_ _ _| 3; %e A211992 . _ _ _ _ %e A211992 4 |_| | | | 1, 1, 1, 1, %e A211992 4 |_ _| | | 2, 1, 1, %e A211992 4 |_ _ _| | 3, 1, %e A211992 4 |_ _| | 2, 2, %e A211992 4 |_ _ _ _| 4; %e A211992 . _ _ _ _ _ %e A211992 5 |_| | | | | 1, 1, 1, 1, 1, %e A211992 5 |_ _| | | | 2, 1, 1, 1, %e A211992 5 |_ _ _| | | 3, 1, 1, %e A211992 5 |_ _| | | 2, 2, 1, %e A211992 5 |_ _ _ _| | 4, 1, %e A211992 5 |_ _ _| | 3, 2, %e A211992 5 |_ _ _ _ _| 5; %e A211992 . _ _ _ _ _ _ %e A211992 6 |_| | | | | | 1, 1, 1, 1, 1, 1, %e A211992 6 |_ _| | | | | 2, 1, 1, 1, 1, %e A211992 6 |_ _ _| | | | 3, 1, 1, 1, %e A211992 6 |_ _| | | | 2, 2, 1, 1, %e A211992 6 |_ _ _ _| | | 4, 1, 1, %e A211992 6 |_ _ _| | | 3, 2, 1, %e A211992 6 |_ _ _ _ _| | 5, 1, %e A211992 6 |_ _| | | 2, 2, 2, %e A211992 6 |_ _ _ _| | 4, 2, %e A211992 6 |_ _ _| | 3, 3, %e A211992 6 |_ _ _ _ _ _| 6; %e A211992 ... %e A211992 Triangle begins: %e A211992 [1]; %e A211992 [1,1], [2]; %e A211992 [1,1,1], [2,1], [3]; %e A211992 [1,1,1,1], [2,1,1], [3,1], [2,2], [4]; %e A211992 [1,1,1,1,1], [2,1,1,1], [3,1,1], [2,2,1], [4,1], [3,2], [5]; %e A211992 [1,1,1,1,1,1], [2,1,1,1,1], [3,1,1,1], [2,2,1,1], [4,1,1], [3,2,1], [5,1], [2,2,2], [4,2], [3,3], [6]; %e A211992 (End) %e A211992 From _Gus Wiseman_, May 10 2020: (Start) %e A211992 The triangle with partitions shown as Heinz numbers (A334437) begins: %e A211992 1 %e A211992 2 %e A211992 4 3 %e A211992 8 6 5 %e A211992 16 12 10 9 7 %e A211992 32 24 20 18 14 15 11 %e A211992 64 48 40 36 28 30 22 27 21 25 13 %e A211992 128 96 80 72 56 60 44 54 42 50 26 45 33 35 17 %e A211992 (End) %t A211992 colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]]; %t A211992 Join@@Table[Sort[IntegerPartitions[n],colex],{n,0,6}] (* _Gus Wiseman_, May 10 2020 *) %o A211992 (PARI) %o A211992 gen_part(n)= %o A211992 { /* Generate partitions of n as weakly increasing lists (order is lex): */ %o A211992 my(ct = 0); %o A211992 my(m, pt); %o A211992 my(x, y); %o A211992 \\ init: %o A211992 my( a = vector( n + (n<=1) ) ); %o A211992 a[1] = 0; a[2] = n; m = 2; %o A211992 while ( m!=1, %o A211992 y = a[m] - 1; %o A211992 m -= 1; %o A211992 x = a[m] + 1; %o A211992 while ( x<=y, %o A211992 a[m] = x; %o A211992 y = y - x; %o A211992 m += 1; %o A211992 ); %o A211992 a[m] = x + y; %o A211992 pt = vector(m, j, a[j]); %o A211992 /* for A026791 print partition: */ %o A211992 \\ for (j=1, m, print1(pt[j],", ") ); %o A211992 /* for A211992 print partition as weakly decreasing list (order is colex): */ %o A211992 forstep (j=m, 1, -1, print1(pt[j],", ") ); %o A211992 ct += 1; %o A211992 ); %o A211992 return(ct); %o A211992 } %o A211992 for(n=1, 10, gen_part(n) ); %o A211992 \\ _Joerg Arndt_, Sep 02 2013 %Y A211992 Cf. A026791, A141285, A194446, A228531. %Y A211992 The graded reversed version is A026792. %Y A211992 The length-sensitive refinement is A036037. %Y A211992 The version for reversed partitions is A080576. %Y A211992 Partition lengths are A193173. %Y A211992 Partition maxima are A194546. %Y A211992 Partition minima are A196931. %Y A211992 The version for compositions is A228525. %Y A211992 The Heinz numbers of these partitions are A334437. %Y A211992 Cf. A036036, A080577, A193073, A228100, A296150, A331581, A334301, A334302, A334436, A334439, A334442. %K A211992 nonn,tabf %O A211992 1,4 %A A211992 _Omar E. Pol_, Aug 18 2012