This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212000 #35 May 21 2012 15:57:56 %S A212000 1,3,2,6,5,3,12,11,9,6,20,19,17,14,8,35,34,32,29,23,15,54,53,51,48,42, %T A212000 34,19,86,85,83,80,74,66,51,32,128,127,125,122,116,108,93,74,42,192, %U A212000 191,189,186,180,172,157,138,106,64,275,274,272,269,263,255,240 %N A212000 Triangle read by rows: T(n,k) = total number of parts in the last n-k+1 shells of n. %C A212000 The set of partitions of n contains n shells (see A135010). Let m and n be two positive integers such that m <= n. It appears that in any set formed by m connected shells, or m disconnected shells, or a mixture of both, the sum of all parts of the j-th column equals the total number of parts >= j in the same set (see example). More generally it appears that any of these sets has the same properties mentioned in A206563 and A207031. %C A212000 It appears that the last k shells of n contain p(n-k) parts of size k, where p(n) = A000041(n). See also A182703. %F A212000 T(n,k) = A006128(n) - A006128(k-1). %F A212000 T(n,k) = Sum_{j=k..n} A138137(j). %e A212000 For n = 5 the illustration shows five sets containing the last n-k+1 shells of 5 and below we can see that the sum of all parts of the first column equals the total number of parts in each set: %e A212000 -------------------------------------------------------- %e A212000 . S{1-5} S{2-5} S{3-5} S{4-5} S{5} %e A212000 -------------------------------------------------------- %e A212000 . The Last Last Last The %e A212000 . five four three two last %e A212000 . shells shells shells shells shell %e A212000 . of 5 of 5 of 5 of 5 of 5 %e A212000 -------------------------------------------------------- %e A212000 . %e A212000 . 5 5 5 5 5 %e A212000 . 3+2 3+2 3+2 3+2 3+2 %e A212000 . 4+1 4+1 4+1 4+1 1 %e A212000 . 2+2+1 2+2+1 2+2+1 2+2+1 1 %e A212000 . 3+1+1 3+1+1 3+1+1 1+1 1 %e A212000 . 2+1+1+1 2+1+1+1 1+1+1 1+1 1 %e A212000 . 1+1+1+1+1 1+1+1+1 1+1+1 1+1 1 %e A212000 . ---------- ---------- ---------- ---------- ---------- %e A212000 . 20 19 17 14 8 %e A212000 . %e A212000 So row 5 lists 20, 19, 17, 14, 8. %e A212000 . %e A212000 Triangle begins: %e A212000 1; %e A212000 3, 2; %e A212000 6, 5, 3; %e A212000 12, 11, 9, 6; %e A212000 20, 19, 17, 14, 8; %e A212000 35, 34, 32, 29, 23, 15; %e A212000 54, 53, 51, 48, 42, 34, 19; %e A212000 86, 85, 83, 80, 74, 66, 51, 32; %e A212000 128, 127, 125, 122, 116, 108, 93, 74, 42; %e A212000 192, 191, 189, 186, 180, 172, 157, 138, 106, 64; %Y A212000 Mirror of triangle A212010. Column 1 is A006128. Right border gives A138137. %Y A212000 Cf. A135010, A138121, A181187, A182703, A206563, A207031, A207032, A212001, A212011 %K A212000 nonn,tabl %O A212000 1,2 %A A212000 _Omar E. Pol_, Apr 26 2012