This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212010 #58 May 21 2012 15:57:31 %S A212010 1,2,3,3,5,6,6,9,11,12,8,14,17,19,20,15,23,29,32,34,35,19,34,42,48,51, %T A212010 53,54,32,51,66,74,80,83,85,86,42,74,93,108,116,122,125,127,128,64, %U A212010 106,138,157,172,180,186,189,191,192,83,147,189,221,240 %N A212010 Triangle read by rows: T(n,k) = total number of parts in the last k shells of n. %C A212010 The set of partitions of n contains n shells (see A135010). Let m and n be two positive integers such that m <= n. It appears that in any set formed by m connected shells, or m disconnected shells, or a mixture of both, the sum of all parts of the j-th column equals the total number of parts >= j in the same set (see example). More generally it appears that any of these sets has the same properties mentioned in A206563 and A207031. %C A212010 It appears that the last k shells of n contain p(n-k) parts of size k, where p(n) = A000041(n). See also A182703. %F A212010 T(n,k) = A006128(n) - A006128(n-k). %F A212010 T(n,k) = Sum_{j=n-k+1..n} A138137(j). %e A212010 For n = 5 the illustration shows five sets containing the last k shells of 5 and below we can see that the sum of all parts of the first column equals the total number of parts in each set: %e A212010 -------------------------------------------------------- %e A212010 . S{5} S{4-5} S{3-5} S{2-5} S{1-5} %e A212010 -------------------------------------------------------- %e A212010 . The Last Last Last The %e A212010 . last two three four five %e A212010 . shell shells shells shells shells %e A212010 . of 5 of 5 of 5 of 5 of 5 %e A212010 -------------------------------------------------------- %e A212010 . %e A212010 . 5 5 5 5 5 %e A212010 . 3+2 3+2 3+2 3+2 3+2 %e A212010 . 1 4+1 4+1 4+1 4+1 %e A212010 . 1 2+2+1 2+2+1 2+2+1 2+2+1 %e A212010 . 1 1+1 3+1+1 3+1+1 3+1+1 %e A212010 . 1 1+1 1+1+1 2+1+1+1 2+1+1+1 %e A212010 . 1 1+1 1+1+1 1+1+1+1 1+1+1+1+1 %e A212010 . ---------- ---------- ---------- ---------- ---------- %e A212010 . 8 14 17 19 20 %e A212010 . %e A212010 So row 5 lists 8, 14, 17, 19, 20. %e A212010 . %e A212010 Triangle begins: %e A212010 1; %e A212010 2, 3; %e A212010 3, 5, 6; %e A212010 6, 9, 11, 12; %e A212010 8, 14, 17, 19, 20; %e A212010 15, 23, 29, 32, 34, 35; %e A212010 19, 34, 42, 48, 51, 53, 54; %e A212010 32, 51, 66, 74, 80, 83, 85, 86; %e A212010 42, 74, 93, 108, 116, 122, 125, 127, 128; %e A212010 64, 106, 138, 157, 172, 180, 186, 189, 191, 192; %Y A212010 Mirror of triangle A212000. Column 1 is A138137. Right border is A006128. %Y A212010 Cf. A135010, A138121, A181187, A182703, A206563, A207031, A207032, A212001, A212011 %K A212010 nonn,tabl %O A212010 1,2 %A A212010 _Omar E. Pol_, Apr 26 2012