This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212011 #15 May 22 2012 12:02:18 %S A212011 1,3,4,5,8,9,11,16,19,20,15,26,31,34,35,31,46,57,62,65,66,39,70,85,96, %T A212011 101,104,105,71,110,141,156,167,172,175,176,94,165,204,235,250,261, %U A212011 266,269,270,150,244,315,354,385,400,411,416,419,420,196,346 %N A212011 Triangle read by rows: T(n,k) = sum of all parts of the last k shells of n. %C A212011 The set of partitions of n contains n shells (see A135010). It appears that the last k shells of n contain p(n-k) parts of size k, where p(n) = A000041(n). See also A182703. %F A212011 T(n,k) = A066186(n) - A066186(n-k). %F A212011 T(n,k) = Sum_{j=n-k+1..n} A138879(j). %e A212011 For n = 5 the illustration shows five sets containing the last k shells of 5 and below we can see that the sum of all parts of in each set: %e A212011 -------------------------------------------------------- %e A212011 . S{5} S{4-5} S{3-5} S{2-5} S{1-5} %e A212011 -------------------------------------------------------- %e A212011 . The Last Last Last The %e A212011 . last two three four five %e A212011 . shell shells shells shells shells %e A212011 . of 5 of 5 of 5 of 5 of 5 %e A212011 -------------------------------------------------------- %e A212011 . %e A212011 . 5 5 5 5 5 %e A212011 . 3+2 3+2 3+2 3+2 3+2 %e A212011 . 1 4+1 4+1 4+1 4+1 %e A212011 . 1 2+2+1 2+2+1 2+2+1 2+2+1 %e A212011 . 1 1+1 3+1+1 3+1+1 3+1+1 %e A212011 . 1 1+1 1+1+1 2+1+1+1 2+1+1+1 %e A212011 . 1 1+1 1+1+1 1+1+1+1 1+1+1+1+1 %e A212011 . ---------- ---------- ---------- ---------- ---------- %e A212011 . 15 26 31 34 35 %e A212011 . %e A212011 So row 5 lists 15, 26, 31, 34, 35. %e A212011 . %e A212011 Triangle begins: %e A212011 1; %e A212011 3, 4; %e A212011 5, 8, 9; %e A212011 11, 16, 19, 20; %e A212011 15, 26, 31, 34, 35; %e A212011 31, 46, 57, 62, 65, 66; %e A212011 39, 70, 85, 96, 101, 104, 105; %e A212011 71, 110, 141, 156, 167, 172, 175, 176; %e A212011 94, 165, 204, 235, 250, 261, 266, 269, 270; %e A212011 150, 244, 315, 354, 385, 400, 411, 416, 419, 420; %Y A212011 Mirror of triangle A212001. Column 1 is A138879. Right border is A066186. %Y A212011 Cf. A135010, A182703, A212000, A212010. %K A212011 nonn,tabl %O A212011 1,2 %A A212011 _Omar E. Pol_, Apr 26 2012