cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212015 Nonsquare positive integers that are sums of consecutive integer squares.

This page as a plain text file.
%I A212015 #15 Jun 08 2020 05:23:04
%S A212015 2,5,6,10,13,14,15,19,28,29,30,31,35,41,44,50,54,55,56,60,61,69,77,85,
%T A212015 86,90,91,92,96,105,110,113,126,135,139,140,141,145,146,149,154,170,
%U A212015 174,181,182,190,194,195,199,203,204,205,209,218,221,230,231
%N A212015 Nonsquare positive integers that are sums of consecutive integer squares.
%C A212015 Nonsquare terms of A062861.
%C A212015 Subsequence of A212016.
%H A212015 Robert Israel, <a href="/A212015/b212015.txt">Table of n, a(n) for n = 1..10000</a>
%p A212015 filter:= proc(n)
%p A212015   not issqr(n) and
%p A212015   ormap(k -> issqr(-3*k^4+3*k^2+36*k*n) and  ((3*k-3*k^2+sqrt(-3*k^4+3*k^2+36*k*n))/(6*k))::integer,
%p A212015     numtheory:-divisors(6*n))
%p A212015 end proc:
%p A212015 select(filter, [$1..1000]); # _Robert Israel_, Jan 22 2017
%t A212015 filterQ[n_] := !IntegerQ[Sqrt[n]] && AnyTrue[Divisors[6n], IntegerQ[Sqrt[-3 #^4 + 3 #^2 + 36 # n]] && IntegerQ[(3 # - 3 #^2 + Sqrt[-3 #^4 + 3 #^2 + 36 # n])/(6#)]&];
%t A212015 Select[Range[1000], filterQ] (* _Jean-François Alcover_, Jun 08 2020, after Maple *)
%Y A212015 Cf. A062861, A212016.
%K A212015 nonn
%O A212015 1,1
%A A212015 _Max Alekseyev_, Apr 26 2012