cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212039 Number of lower triangular n X n arrays colored with integers 0 upwards introduced in row major order, with no element equal to any element within a city block distance of two, and containing the value n(n+1)/2-2.

Original entry on oeis.org

0, 1, 4, 19, 58, 136, 271, 484, 799, 1243, 1846, 2641, 3664, 4954, 6553, 8506, 10861, 13669, 16984, 20863, 25366, 30556, 36499, 43264, 50923, 59551, 69226, 80029, 92044, 105358, 120061, 136246, 154009, 173449, 194668, 217771, 242866, 270064, 299479
Offset: 1

Views

Author

R. H. Hardin, Apr 28 2012

Keywords

Comments

Column 1 of A212044.

Examples

			Some solutions for n=4:
..0........0........0........0........0........0........0........0
..1.2......1.2......1.2......1.2......1.2......1.2......1.2......1.2
..3.4.5....3.4.5....3.4.5....3.4.5....3.4.1....3.4.5....3.4.5....3.4.5
..6.7.8.1..6.7.8.0..6.7.3.8..6.7.0.8..5.6.7.8..6.7.8.3..6.7.2.8..6.1.7.8
		

Crossrefs

Cf. A212044.

Formula

Empirical: a(n) = (1/8)*n^4 + (1/4)*n^3 - (25/8)*n^2 + (23/4)*n - 2 for n>1.
Conjectures from Colin Barker, Jul 20 2018: (Start)
G.f.: x^2*(1 - x + 9*x^2 - 7*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>6.
(End)