A212046 Denominators in the resistance triangle: T(k,n)=b, where b/c is the resistance distance R(k,n) for k resistors in an n-dimensional cube.
1, 4, 1, 12, 4, 6, 32, 12, 96, 3, 80, 32, 480, 48, 15, 64, 80, 320, 240, 320, 30, 448, 64, 35, 20, 6720, 960, 420, 1024, 448, 7168, 560, 35840, 6720, 107520, 105, 2304, 1024, 64512, 3584, 161280, 35840, 322560, 8960, 315, 5120, 2304, 23040, 32256
Offset: 1
Examples
First six rows of A212045/A212046: 1 3/4 .... 1 7/12 ... 3/4 .... 5/6 15/32 .. 7/12 ... 61/96 ... 2/3 31/80 .. 15/32 .. 241/480 . 25/48 ... 8/15 21/64 .. 31/80 .. 131/320 . 101/240 . 137/320 . 13/30 The resistance distances for n=3 (the ordinary cube) are 7/12, 3/4, and 5/6, so that row 3 of the triangle of numerators is (7, 3, 5). For the corresponding electric circuit, suppose X is a vertex of the cube. The resistance across any one of the 3 edges from X is 7/12 ohm; the resistance across any two adjoined edges (i.e., a diagonal of a face of the cubes) is 3/4 ohm; the resistance across and three adjoined edges (a diagonal of the cube) is 5/6 ohm.
References
- F. Nedemeyer and Y. Smorodinsky, Resistances in the multidimensional cube, Quantum 7:1 (1996) 12-15 and 63.
Links
- D. J. Klein, Resistance Distance, Journal of Mathematical Chemistry 12 (1993) 81-95.
- D. J. Klein, Resistance-Distance Sum Rules, Croatia Chemica Acta, Vol. 75, No. 2 (2002), 633-649.
- Nicholas Pippenger, The Hypercube of Resistors, Asymptotic Expansions, and Preferential Arrangements, arXiv:0904.1757 [math.CO], 2009.
- N. Pippenger, The Hypercube of Resistors, Asymptotic Expansions, and Preferential Arrangements, Mathematics Magazine, 83:5 (2010) 331-346.
- D. Singmaster, Problem 79-16, Resistances in an n-Dimensional Cube, SIAM Review, 22 (1980) 504.
- Wikipedia, Resistance distance
Programs
-
Mathematica
R[0, n_] := 0; R[1, n_] := (2 - 2^(1 - n))/n; R[k_, n_] := R[k, n] = ((k - 1) R[k - 2, n] - n R[k - 1, n] + 2^(1 - n))/(k - n - 1) t = Table[R[k, n], {n, 1, 11}, {k, 1, n}] Flatten[Numerator[t]] (* A212045 *) Flatten[Denominator[t]] (* A212046 *) TableForm[Numerator[t]] TableForm[Denominator[t]]
Comments