This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212089 #20 Dec 04 2016 19:46:29 %S A212089 0,1,9,45,139,333,684,1258,2133,3402,5167,7542,10656,14647,19665, %T A212089 25875,33451,42579,53460,66304,81333,98784,118903,141948,168192, %U A212089 197917,231417,269001,310987,357705,409500,466726,529749,598950,674719 %N A212089 Number of (w,x,y,z) with all terms in {1,...,n} and w>=average{x,y,z}. %C A212089 Also, number of (w,x,y,z) with all terms in {1,...,n} and w<=average{x,y,z}. %C A212089 a(n)+A212088(n)=n^4. %C A212089 For a guide to related sequences, see A211795. %H A212089 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 5, -5, 6, -4, 1). %F A212089 a(n) = 4*a(n-1)-6*a(n-2)+5*a(n-3)-5*a(n-4)+6*a(n-5)-4*a(n-6)+a(n-7). %F A212089 G.f.: x*(1+7*x^4+8*x^3+15*x^2+5*x) / ((x^2+x+1)*(-x+1)^5). - _Alois P. Heinz_, May 18 2012 %t A212089 t = Compile[{{n, _Integer}}, Module[{s = 0}, %t A212089 (Do[If[3 w >= x + y + z, s = s + 1], %t A212089 {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; %t A212089 Map[t[#] &, Range[0, 50]] (* A212088 *) %t A212089 FindLinearRecurrence[%] %t A212089 (* _Peter J. C. Moses_, Apr 13 2012 *) %t A212089 LinearRecurrence[{4, -6, 5, -5, 6, -4, 1},{0, 1, 9, 45, 139, 333, 684},35] (* _Ray Chandler_, Aug 02 2015 *) %Y A212089 Cf. A211795, A212069, A212088. %K A212089 nonn %O A212089 0,3 %A A212089 _Clark Kimberling_, May 01 2012