cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212096 Number of (w,x,y,z) with all terms in {1,...,n} and w^3=x^3+y^3+z^3.

This page as a plain text file.
%I A212096 #6 Dec 04 2016 19:46:29
%S A212096 0,0,0,0,0,0,6,6,6,12,12,12,18,18,18,18,18,18,30,36,42,42,42,42,48,54,
%T A212096 54,60,66,72,78,78,78,78,78,78,90,90,96,96,102,114,120,120,126,132,
%U A212096 144,144,150,150,156,156,156,162,180,180,186,192,204,204,216,216
%N A212096 Number of (w,x,y,z) with all terms in {1,...,n} and w^3=x^3+y^3+z^3.
%C A212096 Every term is divisible by 6.  For a guide to related sequences, see A211795.
%t A212096 t = Compile[{{n, _Integer}}, Module[{s = 0},
%t A212096 (Do[If[w^3 == x^3 + y^3 + z^3, s = s + 1],
%t A212096 {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
%t A212096 Map[t[#] &, Range[0, 70]] (* A212096 *)
%t A212096 %/6  (* integers *)
%t A212096 (* _Peter J. C. Moses_, Apr 13 2012 *)
%Y A212096 Cf. A211795.
%K A212096 nonn
%O A212096 0,7
%A A212096 _Clark Kimberling_, May 02 2012