A212098 Number of (w,x,y,z) with all terms in {1,...,n} and w^3<=x^3+y^3+z^3.
0, 1, 15, 72, 221, 536, 1104, 2034, 3451, 5514, 8380, 12246, 17322, 23812, 31981, 42107, 54457, 69350, 87100, 108049, 132591, 161085, 193966, 231592, 274511, 323077, 377830, 439314, 507948, 584401, 669124, 762764, 865882, 979130
Offset: 0
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 0..1000
Programs
-
Maple
f:= proc(n) local x,y,z, r, t; r:= 0: for x from 1 to n do for y from x to n do for z from y to n do t:= min(n, floor((x^3 + y^3 + z^3)^(1/3))); if x = z then r:= r+t elif x=y or y=z then r:= r+3*t else r:= r+6*t fi od od od; r end proc: map(f, [$0..40]); # Robert Israel, May 08 2017
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[w^3 <= x^3 + y^3 + z^3, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 40]] (* A212098 *) (* Peter J. C. Moses, Apr 13 2012 *)
-
PARI
A212098(n)={my(s=0,c=[6,3,1]);forvec(v=vector(4,i,if(i>1,[1,n],[-n,-1])),sum(i=1,4,v[i]^3)>=0&s+=c[1+(v[2]==v[3])+(v[3]==v[4])],1);s} /* not very efficient */ \\ M. F. Hasler, May 20 2012
Formula
a(n) + A212099(n) = n^4.
Comments