cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212103 Number of (w,x,y,z) with all terms in {1,...,n} and w = harmonic mean of {x,y,z}.

Original entry on oeis.org

0, 1, 2, 3, 10, 11, 30, 31, 38, 39, 52, 53, 84, 85, 86, 117, 124, 125, 144, 145, 200, 225, 226, 227, 282, 283, 284, 285, 334, 335, 420, 421, 428, 435, 436, 491, 546, 547, 548, 555, 634, 635, 726, 727, 758, 837, 838, 839, 936, 937, 956, 957, 970, 971
Offset: 0

Views

Author

Clark Kimberling, May 03 2012

Keywords

Comments

Also, the number of (w,x,y,z) with all terms in {1,...,n} and H(w,x,y)=H(w,x,y,z) where H denotes harmonic mean. For a guide to related sequences, see A211795.

Examples

			a(4) counts these:  (1,1,1,1), (2,1,4,4), (2,2,2,2), (2,4,1,4), (2,4,4,1), (3,2,4,4), (3,3,3,3), (3,4,2,4), (3,4,4,2), (4,4,4,4); e.g., (3,2,4,4) is included because it satisfies 3/w=1/x+1/y+1/z.
		

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w*(y*z + z*x + x*y) == 3 x*y*z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 60]] (* A212103 *)
    (* Peter J. C. Moses, Apr 13 2012 *)