This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212120 #44 Oct 26 2024 22:58:18 %S A212120 1,3,5,7,1,9,1,11,3,13,3,15,5,17,5,1,19,7,1,21,7,1,23,9,3,25,9,3,27, %T A212120 11,3,29,11,5,31,13,5,1,33,13,5,1,35,15,7,1,37,15,7,1,39,17,7,3,41,17, %U A212120 9,3,43,19,9,3,45,19,9,3,47,21,11,5,49,21,11,5,1 %N A212120 Triangle read by rows T(n,k), n>=1, k>=1, where T(n,k) is the sum of the divisors d of n with min(d, n/d) = k. %C A212120 Column k lists the odd numbers repeated k times starting in row k^2. %C A212120 1 together with the first differences of the row sums give the divisor function A000005. %C A212120 T(n,k) is also the total number of divisors of all positive integers <= n on the edges of k-th triangle in the diagram of divisors (see link section). See also A212119. %H A212120 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/poldiv04.jpg">Diagram of divisors, figure 1</a>, <a href="http://www.polprimos.com/imagenespub/poldiv05.jpg">figure 2</a>. %F A212120 T(n,k) = Sum_{j=1..n} A212119(j,k). %e A212120 Written as an irregular triangle the sequence begins: %e A212120 1; %e A212120 3; %e A212120 5; %e A212120 7, 1; %e A212120 9, 1; %e A212120 11, 3; %e A212120 13, 3; %e A212120 15, 5; %e A212120 17, 5, 1; %e A212120 19, 7, 1; %e A212120 21, 7, 1; %e A212120 23, 9, 3; %e A212120 25, 9, 3; %e A212120 27, 11, 3; %e A212120 29, 11, 5; %e A212120 31, 13, 5, 1; %e A212120 33, 13, 5, 1; %e A212120 35, 15, 7, 1; %e A212120 37, 15, 7, 1; %e A212120 39, 17, 7, 3; %e A212120 41, 17, 9, 3; %e A212120 43, 19, 9, 3; %e A212120 45, 19, 9, 3; %e A212120 47, 21, 11, 5; %e A212120 49, 21, 11, 5, 1; %Y A212120 Row sums give A006218, n >= 1. %Y A212120 Columns (1-5): A005408, A109613, A130823, A129756, A130497. %Y A212120 Cf. A000005, A027750, A010766, A147861, A163100, A212119. %K A212120 nonn,tabf %O A212120 1,2 %A A212120 _Omar E. Pol_, Jul 02 2012 %E A212120 Definition changed by _Franklin T. Adams-Watters_, Jul 12 2012