cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212135 Number of (w,x,y,z) with all terms in {1,...,n} and median

Original entry on oeis.org

0, 0, 4, 24, 84, 220, 480, 924, 1624, 2664, 4140, 6160, 8844, 12324, 16744, 22260, 29040, 37264, 47124, 58824, 72580, 88620, 107184, 128524, 152904, 180600, 211900, 247104, 286524, 330484, 379320, 433380, 493024, 558624, 630564, 709240, 795060, 888444
Offset: 0

Views

Author

Clark Kimberling, May 05 2012

Keywords

Comments

Also, the number of (w,x,y,z) with all terms in {1,...,n} and median>mean.
For a guide to related sequences, see A211795.
Also, a(n+1) is the length of the long leg of the unique primitive Pythagorean triple whose inradius is A000217(n). - Miguel-Ángel Pérez García-Ortega, Jul 13 2025

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[
    Apply[Plus, Rest[Most[Sort[{w, x, y, z}]]]]/2 > (w + x + y + z)/4, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Flatten[Map[{t[#]} &, Range[0, 20]]]  (* A212135 *)
    %/4 (* A002817 *)
  • PARI
    concat(vector(2), Vec(4*x*(1 + x + x^2) / (1 - x)^5 + O(x^40))) \\ Colin Barker, Dec 02 2017

Formula

a(n) + A212134(n) = n^4.
a(n) = n*(n - 1)*(n^2 - n + 2)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 4*x*(1 + x + x^2) / (1 - x)^5. - Colin Barker, Dec 02 2017