A212138 Triangular array: T(n,k) is the number of k-element subsets S of {1,...,n} whose average is in S.
1, 2, 0, 3, 0, 1, 4, 0, 2, 0, 5, 0, 4, 0, 1, 6, 0, 6, 2, 2, 0, 7, 0, 9, 4, 5, 0, 1, 8, 0, 12, 8, 10, 2, 2, 0, 9, 0, 16, 14, 18, 8, 6, 0, 1, 10, 0, 20, 22, 32, 20, 14, 4, 2, 0, 11, 0, 25, 32, 52, 42, 34, 14, 7, 0, 1, 12, 0, 30, 46, 80, 80, 72, 42, 22, 4, 2, 0, 13, 0, 36, 62, 119, 1
Offset: 1
Examples
First 7 rows: 1 2...0 3...0...1 4...0...2...0 5...0...4...0...1 6...0...6...2...2...0 7...0...9...4...5...0...1 T(5,3) counts these subsets: {1,2,3}, {1,3,5}, {2,3,4}, {3,4,5}.
Crossrefs
Cf. A061865.
Programs
-
Mathematica
t[n_, k_] := Length[Flatten[Map[Apply[Intersection, #] &, Select[Map[{#, {Mean[#]}} &, Subsets[Range[n], {k}]], IntegerQ[Last[Last[#]]] &]]]] Flatten[Table[t[n, k], {n, 1, 12}, {k, 1, n}]] TableForm[Table[t[n, k], {n, 1, 12}, {k, 1, n}]] (* Peter J. C. Moses, May 01 2012 *)