A212148 Triangular array: T(n,k) is the number of k-element subsets S of {1,...,n} such that mean(S) is not equal to median(S).
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 2, 0, 0, 0, 14, 8, 4, 0, 0, 0, 26, 22, 16, 4, 0, 0, 0, 44, 48, 46, 20, 6, 0, 0, 0, 68, 92, 108, 66, 30, 6, 0, 0, 0, 100, 160, 222, 174, 106, 36, 8, 0, 0, 0, 140, 260, 414, 396, 298, 142, 48, 8, 0, 0, 0, 190, 400, 720, 810, 728, 440
Offset: 1
Examples
First 7 rows: 0 0...0 0...0...0 0...0...2....0 0...0...6....2....0 0...0...14...8....4...0 0...0...26...22...16...4...0 The subsets counted by T(5,3) are {1,2,4}, {1,2,5}, {1,3,4}, {1,4,5}, {2,3,5}, {2,4,5}.
Crossrefs
Cf. A212139.
Programs
-
Mathematica
t[n_, k_] := t[n, k] = Count[Map[Median[#] == Mean[#] &, Subsets[Range[n], {k}]], False] Flatten[Table[t[n, k], {n, 1, 12}, {k, 1, n}]] TableForm[Table[t[n, k], {n, 1, 12}, {k, 1, n}]] s[n_] := Sum[t[n, k], {k, 1, n}] Table[s[n], {n, 1, 20}] (* A212140 *) %/2 (* A212149 *) (* Peter J. C. Moses, May 01 2012 *)
Comments