A212153 Approximations up to 7^n for one of the three 7-adic integers (-1)^(1/3).
0, 5, 19, 19, 1048, 15454, 82682, 82682, 3376854, 14906456, 135967277, 700917775, 4655571261, 18496858462, 406052900090, 3797168264335, 22787414304107, 188952067152112, 654213095126526, 654213095126526, 57648689021992241, 456610020510052246, 2132247612759904267
Offset: 0
Examples
a(4) == 19^7 (mod 7^4) = 893871739 (mod 2401) = 1048. a(4) == 5^343 (mod 7^4) = 1048. a(4) = 19 + 3*7^3 = 1048. a(4) = 5*7^0 + 2*7^1 + 0*7^2 + 3*7^3 = 1048. a(4) = 7^4 + 1 - 1354 = 1048. a(3) = a(2) = 19 because A212155(2) = 0.
Links
- Kenny Lau, Table of n, a(n) for n = 0..1499
Crossrefs
Programs
-
Maple
a:=proc(n) option remember: if n=0 then 0 elif n=1 then 5 else modp(a(n-1)^7, 7^n) fi end proc:
-
Mathematica
Join[{0}, FoldList[PowerMod[#, 7, 7^#2] &, 5, Range[2, 25]]] (* Paolo Xausa, Jan 14 2025 *)
-
PARI
a(n) = lift((1+sqrt(-3+O(7^n)))/2) \\ Jianing Song, Aug 26 2022
Formula
Recurrence: a(n) = a(n-1)^7 (mod 7^n), n>=2, a(0):=0, a(1)=5.
a(n) == 5^(7^(n-1)) (mod 7^n) == 5 (mod 7), n>= 1.
a(n+1) = a(n) + A212155(n)*7^n, n>=1.
a(n+1) = Sum_{k=0..n} A212155(k)*7^k, n>=1.
a(n-1)^2*a(n) + 1 == 0 (mod 7^(n-1)), n>=1 (from 3*a(n)^2*A212155(n) + A212154(n) == 0 (mod 7) and the formula two lines above).
a(n) = 7^n + 1 - A210852(n), n>=1.
Comments