This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212173 #33 Jul 05 2025 01:26:48 %S A212173 1,1,1,4,1,1,1,8,4,1,1,4,1,1,1,16,1,4,1,4,1,1,1,8,4,1,8,4,1,1,1,32,1, %T A212173 1,1,36,1,1,1,8,1,1,1,4,4,1,1,16,4,4,1,4,1,8,1,8,1,1,1,4,1,1,4,64,1,1, %U A212173 1,4,1,1,1,72,1,1,4,4,1,1,1,16,16,1,1,4 %N A212173 First integer with same second signature as n (cf. A212172). %C A212173 Two integers have the same second signature iff the same exponents >= 2 occur in the canonical prime factorization of each integer, regardless of the order in which they occur in each factorization. %D A212173 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844. %H A212173 Jason Kimberley, <a href="/A212173/b212173.txt">Table of n, a(n) for n = 1..10000</a> %H A212173 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A212173 Primefan, <a href="http://primefan.tripod.com/500factored.html">The First 2500 Integers Factored</a> (1st of 5 pages) %F A212173 a(n) = A046523(A057521(n)) = A057521(A046523(n)). %e A212173 12 = 2^2*3 has 1 exponent >= 2 in its prime factorization, namely, 2. Hence, its second signature is {2}. The smallest number with second signature {2} is 4; hence, a(12) = 4. %p A212173 f:= proc(n) local E,i; %p A212173 E:= sort(select(`>`, map(t -> t[2], ifactors(n)[2]), 1),`>`); %p A212173 mul(ithprime(i)^E[i],i=1..nops(E)) %p A212173 end proc: %p A212173 map(f, [$1..100]); # _Robert Israel_, Jul 19 2017 %t A212173 Function[s, Sort[Apply[Join, Map[Function[k, Map[{#, First@ k} &, k]], Values@ s]]][[All, -1]]]@ KeySort@ PositionIndex@ Table[Sort@ DeleteCases[FactorInteger[n][[All, -1]], e_ /; e < 2] /. {} -> {1}, {n, 84}] (* _Michael De Vlieger_, Jul 19 2017 *) %o A212173 (Magma) A212173 := func<n| &*[Integers()| NthPrime(j)^s[j]:j in[1..#s]] where s is Reverse(Sort([pe[2]:pe in Factorisation(n)| pe[2]gt 1]))>; [A212173(n):n in[1..85]]; // _Jason Kimberley_, Jun 14 2012 %o A212173 (Python) %o A212173 from functools import reduce %o A212173 from sympy import factorint %o A212173 from operator import mul %o A212173 def P(n): return sorted(factorint(n).values()) %o A212173 def a046523(n): %o A212173 x=1 %o A212173 while True: %o A212173 if P(n)==P(x): return x %o A212173 else: x+=1 %o A212173 def a057521(n): return 1 if n==1 else reduce(mul, [1 if e==1 else p**e for p, e in factorint(n).items()]) %o A212173 def a(n): return a046523(a057521(n)) %o A212173 print([a(n) for n in range(1, 151)]) # _Indranil Ghosh_, Jul 19 2017 %o A212173 (PARI) a(n) = {my(sn = vecsort(select(x->(x>=2), factor(n)[,2]))); for (i=1, n, if (vecsort(select(x->(x>=2),factor(i)[,2])) == sn, return(i)););} \\ _Michel Marcus_, Jul 19 2017 %Y A212173 Cf. A212172, A046523. All terms belong to A181800. %K A212173 nonn,easy %O A212173 1,4 %A A212173 _Matthew Vandermast_, Jun 03 2012