cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212180 Number of distinct second signatures (cf. A212172) represented among divisors of n.

This page as a plain text file.
%I A212180 #29 May 04 2020 15:05:20
%S A212180 1,1,1,2,1,1,1,3,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,5,1,1,
%T A212180 1,3,1,1,1,3,1,1,1,2,2,1,1,4,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,6,1,1,1,2,
%U A212180 1,1,1,5,1,1,2,2,1,1,1,4,4,1,1,2,1,1,1,3
%N A212180 Number of distinct second signatures (cf. A212172) represented among divisors of n.
%C A212180 Completely determined by the exponents >=2 in the prime factorization of n (cf. A212172, A212173).
%C A212180 The fraction of the divisors of n which have a given second signature {S} is also a function of n's second signature. For example, if n has second signature {3,2}, it follows that 1/3 of n's divisors are squarefree. Squarefree numbers are represented with 0's in A212172, in accord with the usual OEIS custom of using 0 for nonexistent elements; in comments, their second signature is represented as { }.
%H A212180 Antti Karttunen, <a href="/A212180/b212180.txt">Table of n, a(n) for n = 1..10000</a>
%H A212180 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%e A212180 The divisors of 72 represent a total of 5 distinct second signatures (cf. A212172), as can be seen from the exponents >= 2, if any, in the canonical prime factorization of each divisor:
%e A212180 { }: 1, 2 (prime), 3 (prime), 6 (2*3)
%e A212180 {2}: 4 (2^2), 9 (3^2), 12 (2^2*3), 18 (2*3^2)
%e A212180 {3}: 8 (2^3), 24 (2^3*3)
%e A212180 {2,2}: 36 (2^2*3^2)
%e A212180 {3,2}: 72 (2^3*3^2)
%e A212180 Hence, a(72) = 5.
%t A212180 Array[Length@ Union@ Map[Sort@ Select[FactorInteger[#][[All, -1]], # >= 2 &] &, Divisors@ #] &, 88] (* _Michael De Vlieger_, Jul 19 2017 *)
%o A212180 (PARI)
%o A212180 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from _Charles R Greathouse IV_, Aug 17 2011
%o A212180 A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); } \\ This function from _Charles R Greathouse IV_, Aug 13 2013
%o A212180 A212173(n) = A046523(A057521(n));
%o A212180 A212180(n) = { my(vals = Set()); fordiv(n, d, vals = Set(concat(vals, A212173(d)))); length(vals); }; \\ _Antti Karttunen_, Jul 19 2017
%o A212180 (Python)
%o A212180 from sympy import factorint, divisors, prod
%o A212180 def P(n): return sorted(factorint(n).values())
%o A212180 def a046523(n):
%o A212180     x=1
%o A212180     while True:
%o A212180         if P(n)==P(x): return x
%o A212180         else: x+=1
%o A212180 def a057521(n): return 1 if n==1 else prod(p**e for p, e in factorint(n).items() if e != 1)
%o A212180 def a212173(n): return a046523(a057521(n))
%o A212180 def a(n):
%o A212180     l=[]
%o A212180     for d in divisors(n):
%o A212180         x=a212173(d)
%o A212180         if not x in l:l+=[x, ]
%o A212180     return len(l)
%o A212180 print([a(n) for n in range(1, 51)]) # _Indranil Ghosh_, Jul 19 2017
%Y A212180 Cf. A212172, A085082, A088873, A181796, A182860, A212173, A212642, A212643, A212644.
%K A212180 nonn
%O A212180 1,4
%A A212180 _Matthew Vandermast_, Jun 04 2012