This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212181 #44 Nov 04 2022 05:07:14 %S A212181 1,1,1,3,1,1,1,1,3,1,1,3,1,1,1,5,1,3,1,3,1,1,1,1,3,1,1,3,1,1,1,3,1,1, %T A212181 1,9,1,1,1,1,1,1,1,3,3,1,1,5,3,3,1,3,1,1,1,1,1,1,1,3,1,1,3,7,1,1,1,3, %U A212181 1,1,1,3,1,1,3,3,1,1,1,5,5,1,1,3,1,1,1,1 %N A212181 Largest odd divisor of tau(n): a(n) = A000265(A000005(n)). %C A212181 Completely determined by the exponents >=2 in the prime factorization of n (cf. A212172). %C A212181 Not the same as the number of odd divisors of n (A001227(n)); see example. %C A212181 Multiplicative because A000005 is multiplicative and A000265 is completely multiplicative. - _Andrew Howroyd_, Aug 01 2018 %C A212181 a(n) = 1 iff the number of divisors of n is a power of 2 (A036537). - _Bernard Schott_, Nov 04 2022 %H A212181 Antti Karttunen, <a href="/A212181/b212181.txt">Table of n, a(n) for n = 1..10000</a> %H A212181 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %F A212181 a(n) = A000265(A000005(n)). %F A212181 From _Antti Karttunen_, Jan 14 2020: (Start) %F A212181 a(n) = A000005(n) / A000079(A295664(n)). %F A212181 a(A108951(n)) = A331286(n). %F A212181 (End) %F A212181 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p odd prime} ((1 - 1/p)*(1 + Sum_{k>=1} a(k+1)/p^k)) = 2.076325817863586... . - _Amiram Eldar_, Oct 15 2022 %e A212181 48 has a total of 10 divisors (1, 2, 3, 4, 6, 8, 12, 16, 24 and 48). Since the largest odd divisor of 10 is 5, a(48) = 5. %t A212181 Table[Block[{nd=DivisorSigma[0, n]}, nd/2^IntegerExponent[nd, 2]], {n, 100}] (* _Indranil Ghosh_, Jul 19 2017, after PARI code *) %o A212181 (PARI) a(n) = my(nd = numdiv(n)); nd/2^valuation(nd, 2); \\ _Michel Marcus_, Jul 19 2017 %o A212181 (Python) %o A212181 from sympy import divisor_count, divisors %o A212181 def a(n): return [i for i in divisors(divisor_count(n)) if i%2][-1] %o A212181 print([a(n) for n in range(1, 101)]) # _Indranil Ghosh_, Jul 19 2017 %Y A212181 Cf. A000005, A000079, A000265, A036537, A108951, A212172, A295664, A331286 (applied to primorial inflation of n). %K A212181 nonn,mult %O A212181 1,4 %A A212181 _Matthew Vandermast_, Jun 04 2012