cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212191 Numbers whose squares are the sum of exactly three distinct powers of 2.

This page as a plain text file.
%I A212191 #34 Sep 22 2022 01:49:25
%S A212191 5,7,9,10,14,17,18,20,23,28,33,34,36,40,46,56,65,66,68,72,80,92,112,
%T A212191 129,130,132,136,144,160,184,224,257,258,260,264,272,288,320,368,448,
%U A212191 513,514,516,520,528,544,576,640,736,896,1025,1026,1028,1032,1040
%N A212191 Numbers whose squares are the sum of exactly three distinct powers of 2.
%C A212191 The finite sequence 5, 7, 9, 10, 14, 17 arises in the following context: squarefree circular words over the ternary alphabet exist for all lengths n except for 5, 7, 9, 10, 14, 17. See Currie (2002), Shur (2010). - _N. J. A. Sloane_, May 04 2013
%H A212191 Giovanni Resta, <a href="/A212191/b212191.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Reinhard Zumkeller)
%H A212191 J. D. Currie, <a href="https://doi.org/10.37236/1671">There are ternary circular square-free words of length n for n >= 18</a>, Elect. J. Combinatorics 9 (2002), Note #N10.
%H A212191 James D. Currie, and Jesse T. Johnson, <a href="https://arxiv.org/abs/2005.06235">There are level ternary circular square-free words of length n for n != 5,7,9,10,14,17</a>, arXiv:2005.06235 [math.CO], 2020.
%H A212191 Arseny M. Shur, <a href="https://doi.org/10.37236/412">On Ternary Square-free Circular Words</a>, Electronic J. Combin., Volume 17 (2010), Research Paper #R140.
%F A212191 a(n)^2 = A212190(n).
%t A212191 Select[Range[1, 1000], Total[IntegerDigits[#^2, 2]] == 3 &] (* _T. D. Noe_, Dec 07 2012 *)
%o A212191 (Haskell)
%o A212191 a212191 n = a212191_list !! (n-1)
%o A212191 a212191_list = map a000196 a212190_list
%Y A212191 Cf. A000196, A005009 (subsequence).
%K A212191 nonn
%O A212191 1,1
%A A212191 _Reinhard Zumkeller_, May 03 2012